Advertisement

Dielectric losses and ac conductivity of Si–LiNbO3 heterostructures grown by the RF magnetron sputtering method

  • V. Ievlev
  • M. SumetsEmail author
  • A. Kostyuchenko
  • N. Bezryadin
Article

Abstract

Single-axis <0001> textured polycrystalline LiNbO3 films were grown on (001) Si substrates by the RF magnetron sputtering method. Dielectric losses that occur in the Si–LiNbO3 heterostructures are caused by the conductivity of the LiNbO3 films. Analysis of temperature and frequency dependence of ac conductivity in the frequency range f = 25/105 Hz has demonstrated that it is expressed by the power law σ(ω) = Aωs and is described in the framework of the correlated barrier-hopping model. Thermal annealing (TA) of the Si–LiNbO3 heterostructures causes an increase in the density of the localized states in the band gap of LiNbO3 from D = 7 × 1024 m−3 to D = 2 × 1025 m−3. The conduction mechanism is changed radically after TA and phonon-assisted tunneling influences ac conductivity at the frequency of up to 800 Hz. At high frequency (f > 800 Hz), dielectric relaxation predominates affecting frequency dependence σ(ω) on relaxation time τ = 6.6 × 10−5 s.

Keywords

Dielectric Loss Thermal Annealing LiNbO3 Lithium Niobate Tangent Dielectric Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Easwaran, C. Balasubramanian, S.A.K. Narayandass, D. Mangalaraj, Phys. state. solid. (a) 129, 443 (1992)CrossRefGoogle Scholar
  2. 2.
    R.W. Vest, Wu, R.C.R applications of ferroelectrics, In: IEEE 7th International Symposium on 170 (1990)Google Scholar
  3. 3.
    S.K. Park, M.S. Baek, S.C. Bae, S.Y. Kwun, K.T. Kim, K.W. Kim, Solid State Commun. 111, 347 (1999)CrossRefGoogle Scholar
  4. 4.
    K. Terabe et al., J. Cryst. Growth 179, 577 (1997)CrossRefGoogle Scholar
  5. 5.
    S.D. Cheng, X.Q. Han, C.H. Kam, Y. Zhou, Y.L. Lam, J.T. Oh, X.W. Xu, T.C. Chong, Appl. Phys. A Mater. Sci. Process. 73, 511 (2001)CrossRefGoogle Scholar
  6. 6.
    V.M. Ievlev, M.P. Sumets, A.V. Kostyuchenko, Mater. Sci. Forum 700, 53 (2011)CrossRefGoogle Scholar
  7. 7.
    N.F. Mott, E. Davis, Electronic Process in Noncrystalline Materials, 2nd edn. (Clarendon, Clarendo, 1997)Google Scholar
  8. 8.
    A.R. Long, Adv. Phys. 31, 553 (1982)CrossRefGoogle Scholar
  9. 9.
    M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)CrossRefGoogle Scholar
  10. 10.
    S.R. Elliott, Phil. Mag. B 36, 1291 (1977)CrossRefGoogle Scholar
  11. 11.
    L.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)CrossRefGoogle Scholar
  12. 12.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  13. 13.
    V. Iyevlev, A. Kostyuchenko, M. Sumets, V. Vakhtel, J. Mater. Sci.: Mater. Electron. 22, 1258 (2011)CrossRefGoogle Scholar
  14. 14.
    R.H. Chin, R.Y. Chang, C.S. Shern, T. Fukami, J. Phys. Chem. Sol. 64, 553 (2003)CrossRefGoogle Scholar
  15. 15.
    Emin D. and Holsten T, Ann. Phys. 53, 439Google Scholar
  16. 16.
    V. Iyevlev, A. Kostyuchenko, M. Sumets, J. Mater. Sci.: Mater. Electron. 23, 913 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. Ievlev
    • 1
  • M. Sumets
    • 1
    Email author
  • A. Kostyuchenko
    • 1
  • N. Bezryadin
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Voronezh State University of Engineering TechnologiesVoronezhRussia

Personalised recommendations