Skip to main content
Log in

Synthesis of CeO2 nanorods with improved photocatalytic activity: comparison between precipitation and hydrothermal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main purpose of this article is to examine the surface free cerium oxide (CeO2) nanostructures prepared by different methods. CeO2 nanoparticles and nanorods were prepared by two different methods including precipitation and hydrothermal process. In precipitation process the nanoparticles were prepared at room temperature, while in hydrothermal process nanorods were prepared at high temperature. X-ray and electron diffraction analysis show the presence of CeO2. X-ray photoelectron spectroscopy (XPS) confirms the presence of CeO2 in both nanostructures. From BET, the specific surface area of nanorods (110 m2g−1) is found to be higher than nanoparticles (52 m2g−1). Also, the effect of morphology on their photodegradation of azo dye acid orange 7 (AO7) under UV–Visible light has been successfully investigated. The results show that the CeO2 nanorods synthesized by hydrothermal method have high surface area and exhibit improved performance in the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhang, X. Ju, Z.Y. Wu, T. Liu, T.D. Hu, Y.N. Xie, Chem. Mater. 13, 4192 (2001)

    Article  CAS  Google Scholar 

  2. X.T. Sayle, S.C. Parker, D.C. Sayle, Chem. Commun. 21, 2438 (2004)

    Article  Google Scholar 

  3. S. Li, Z. Li, B. Bergman, J. Alloys, Compound 492, 392 (2010)

    Article  CAS  Google Scholar 

  4. D.G. Shchukin, R.A. Caruso, Chem. Mater. 16, 2287 (2004)

    Article  CAS  Google Scholar 

  5. M. Yamashita, K. Kameyama, S. Yabe, J. Mater. Sci. 37, 683 (2002)

    Article  CAS  Google Scholar 

  6. K.H. Chung, D.C. Park, Catal. Today 30, 157 (1996)

    Article  CAS  Google Scholar 

  7. G.R. Bamwenda, H.J. Arakawa, Mol Catal A Chem 161, 105 (2000)

    Article  CAS  Google Scholar 

  8. C. Pan, D. Zhang, L. Shi, J. Solid, State Chem 181, 1298 (2008)

    Article  CAS  Google Scholar 

  9. F. Gu, Z. Wang, D. Han, C. Shi, G. Guo, Mater. Sci. Eng., B 139, 62 (2007)

    Article  CAS  Google Scholar 

  10. D. Zhang, H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu, Inorg. Chem. 47, 2446 (2007)

    Article  Google Scholar 

  11. S. Tsunekawa, J.T. Wang, Y. Kawazoe, J. Alloys, Compound 408, 1145 (2006)

    Article  Google Scholar 

  12. C. Sun, H. Li, Z. Wang, L. Chen, Chem. Lett. 33, 662 (2004)

    Article  CAS  Google Scholar 

  13. B.B. Patil, S.H. Pawar, J. Alloys, Compound 509, 414 (2011)

    Article  CAS  Google Scholar 

  14. D.M. Lyons, J.P. McGrath, M.A. Morris, J Phys Chem B 107, 4607 (2003)

    Article  CAS  Google Scholar 

  15. N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 89, 166601 (2002)

    Article  CAS  Google Scholar 

  16. H.I. Chen, H.Y. Chang, Ceram. Int. 31, 795 (2005)

    Article  CAS  Google Scholar 

  17. X. Lu, X. Li, F. Chen, C. Ni, Z. Chen, J. Alloys, Compound 476, 958 (2009)

    Article  CAS  Google Scholar 

  18. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80, 127 (2002)

    Article  CAS  Google Scholar 

  19. D.V. Talapin, A.L. Rogach, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller, J. Am. Chem. Soc. 124, 5782 (2002)

    Article  CAS  Google Scholar 

  20. L. Yue, W. Gao, D. Zhang, X. Guo, W. Ding, Y. Chen, J. Am. Chem. Soc. 128, 11042 (2006)

    Article  CAS  Google Scholar 

  21. L. Yan, X. Xing, R. Yu, L. Qiao, J. Chen, J. Denga, G. Liu, Scripta Mater. 56, 301 (2007)

    Article  CAS  Google Scholar 

  22. C. Tiejun, L. Yuchao, P. Zhenshan, L. Yunfei, W. Zongyuan, D. Qian, J Environ Sci 21, 997 (2009)

    Article  Google Scholar 

  23. P.X. Huang, F. Wu, B.L. Zhu, X.P. Gao, H.Y. Zhu, T.Y. Yan, W.P. Huang, S.H. Wu, D.Y. Song, J Phys Chem B 109, 19169 (2005)

    Article  CAS  Google Scholar 

  24. F. Elisangela, Z. Andrea, D.G. Fabio, R.M. Cristiano, D.L. Regina, C.P. Artur, Int Biodeterior Biodegrad 63, 280 (2009)

    Article  CAS  Google Scholar 

  25. P. Ji, J. Zhang, F. Chen, M. Anpo, Appl Catal B Environ 85, 148 (2009)

    Article  CAS  Google Scholar 

  26. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, J. Mater. Chem. 20, 831 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, NSA would like to thank Lunghwa University for offering Internship program and he would also like to thank Ms. Koug Chen, Mr. Shun Cho and Chin-Hua Yu for their help during FESEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sabari Arul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabari Arul, N., Mangalaraj, D., Kim, T.W. et al. Synthesis of CeO2 nanorods with improved photocatalytic activity: comparison between precipitation and hydrothermal process. J Mater Sci: Mater Electron 24, 1644–1650 (2013). https://doi.org/10.1007/s10854-012-0989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0989-x

Keywords

Navigation