Advertisement

On the applicability of a semi-analytical approach to determining the transient electron transport response of gallium arsenide, gallium nitride, and zinc oxide

  • Walid A. Hadi
  • Michael S. Shur
  • Stephen K. O’Leary
Article

Abstract

We critically examine the applicability of the semi-analytical approach of Shur (M. Shur, Electron Lett 12, 615 (1976)) in evaluating the transient electron transport response of gallium arsenide, gallium nitride, and zinc oxide. In particular, we contrast results obtained using this semi-analytical approach of Shur with those obtained using Monte Carlo simulations of the electron transport. Our approach will be to examine the response of an ensemble of electrons to the application of a constant and uniform applied electric field. For the purposes of this analysis, three aspects of the transient electron transport response will be considered: (1) the dependence of the electron drift velocity on the time elapsed since the onset of the applied electric field, (2) the dependence of the average electron energy on the time elapsed since the onset of the applied electric field, and (3) the dependence of the average electron displacement on the time elapsed since the onset of the applied electric field. The results obtained show that this semi-analytical approach of Shur produces results that are very similar to those produced using Monte Carlo simulations. Thus, this semi-analytical approach of Shur should be applicable for the treatment of non-uniform and time-varying electric fields, making it a useful tool for the treatment of the transient electron transport response within electron device configurations.

Keywords

Applied Electric Field Monte Carlo Result Electron Drift Velocity Average Electron Energy Applied Electric Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. The work at Rensselaer Polytechnic Institute (M. S. Shur) was supported primarily through the Engineering Research Centers program of the National Science Foundation under the NSF Cooperative Agreement No. EEC-0812056 and in part by New York State under NYSTAR contract C090145.

References

  1. 1.
    C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  2. 2.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)CrossRefGoogle Scholar
  4. 4.
    R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Comm. 196, 1030 (2009)CrossRefGoogle Scholar
  5. 5.
    Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)CrossRefGoogle Scholar
  6. 6.
    F. Scholz, Semiconductor Sci. Tech. 27, 024002 (2012)CrossRefGoogle Scholar
  7. 7.
    R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Micro. Theor. Tech. 60, 1764 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992)CrossRefGoogle Scholar
  9. 9.
    H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)Google Scholar
  10. 10.
    H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)CrossRefGoogle Scholar
  11. 11.
    D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)CrossRefGoogle Scholar
  12. 12.
    I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Dev. Lett. 32, 1534 (2011)CrossRefGoogle Scholar
  13. 13.
    B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008)CrossRefGoogle Scholar
  15. 15.
    B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)CrossRefGoogle Scholar
  16. 16.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)CrossRefGoogle Scholar
  17. 17.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)CrossRefGoogle Scholar
  18. 18.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, Deep UV LEDs, in Advances in GaN and ZnO-based Thin Film, Bulk, and Nanostructured Materials and Devices. Series in Materials Science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120Google Scholar
  20. 20.
    D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Moroç, Super. Micro. 48, 458 (2010)CrossRefGoogle Scholar
  22. 22.
    C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993)CrossRefGoogle Scholar
  23. 23.
    J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999)CrossRefGoogle Scholar
  24. 24.
    J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)CrossRefGoogle Scholar
  25. 25.
    D.K. Ferry, Phys. Rev. B 12, 2361 (1975)CrossRefGoogle Scholar
  26. 26.
    M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975)CrossRefGoogle Scholar
  27. 27.
    P. Das, D.K. Ferry, Solid-State Electron. 19, 851 (1976)CrossRefGoogle Scholar
  28. 28.
    B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993)CrossRefGoogle Scholar
  29. 29.
    V. W. L. Chin, T. L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)CrossRefGoogle Scholar
  30. 30.
    N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995)CrossRefGoogle Scholar
  31. 31.
    J. Kolník,  İ. H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995)CrossRefGoogle Scholar
  32. 32.
    M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996)CrossRefGoogle Scholar
  33. 33.
    B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997)CrossRefGoogle Scholar
  34. 34.
    U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997)CrossRefGoogle Scholar
  35. 35.
    J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998)CrossRefGoogle Scholar
  36. 36.
    N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)CrossRefGoogle Scholar
  37. 37.
    J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998)Google Scholar
  38. 38.
    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)CrossRefGoogle Scholar
  39. 39.
    B. Guo, U. Ravaioli, M. Staedele, Comput. Phys. Commun. 175, 482 (2006)CrossRefGoogle Scholar
  40. 40.
    F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007)CrossRefGoogle Scholar
  41. 41.
    E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid-State Electron. 52, 1796 (2008)CrossRefGoogle Scholar
  42. 42.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)CrossRefGoogle Scholar
  43. 43.
    W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)CrossRefGoogle Scholar
  44. 44.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)CrossRefGoogle Scholar
  45. 45.
    J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972)CrossRefGoogle Scholar
  46. 46.
    M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979)CrossRefGoogle Scholar
  47. 47.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)CrossRefGoogle Scholar
  48. 48.
    M. Shur, Electron. Lett. 12, 615 (1976)CrossRefGoogle Scholar
  49. 49.
    W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)CrossRefGoogle Scholar
  50. 50.
    P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985)CrossRefGoogle Scholar
  51. 51.
    K. Seeger, Semiconductor Physics: An Introduction, 9th ed. (Springer, Berlin, 2004)Google Scholar
  52. 52.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)CrossRefGoogle Scholar
  53. 53.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)CrossRefGoogle Scholar
  54. 54.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)CrossRefGoogle Scholar
  55. 55.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010)CrossRefGoogle Scholar
  56. 56.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron.  10.1007/s10854-012-0782-x
  57. 57.
    W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron.  10.1007/s10854-012-0818-2
  58. 58.
    S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, Chichister, 2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Walid A. Hadi
    • 1
  • Michael S. Shur
    • 2
  • Stephen K. O’Leary
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of WindsorWindsorCanada
  2. 2.Department of Electrical, Computer, and Systems EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.School of EngineeringThe University of British ColumbiaKelownaCanada

Personalised recommendations