Skip to main content
Log in

Experimental and theoretical approaches on magnetoresistivity of Lu-Doped Y-123 superconducting ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study discusses the change of the flux pinning mechanism, electrical and superconducting properties of Lu added YBa2Cu3O7-δ bulk superconducting ceramics prepared by the liquid ammonium nitrate and derivatives at 970 °C for 20 h by means of magnetotransport measurements conducted in the magnetic filed range from 0 to 6 kG. The critical transition (both \( T_{c}^{onset} \)and\( T_{c}^{offset} \)) temperatures, residual resistivity (ρ0), residual resistivity ratios (RRR), irreversibility fields (μ0Hirr), upper critical fields (μ 0 H c2 ), penetration depths (λ) and coherence lengths (ξ) of the YBa2LuxCu3O7-δ materials are evaluated from the magnetoresistivity curves. The resistivity criteria of 10 and 90 % normal-state resistivity serve as the important parameters for the description of the irreversibility and upper critical fields, respectively. Moreover, ρ 0 , μ 0 H irr (0) and μ 0 H c2 (0) values of the bulk samples are theoretically calculated using the extrapolation method at absolute zero temperature (T = 0 K). Likewise, the ξ and λ values are inferred from μ 0 H irr (0) and μ 0 H c2 (0) values obtained, respectively. At the same time, activation energies of the samples studied are determined from thermally activated flux creep (TAFC) model. The results obtained indicate that the pinning mechanism, electrical and superconducting properties of the samples enhance with the increment of the Lu addition up to level of 0.1 wt% beyond which these properties start to deteriorate systematically and in fact reach the local minimum points for the sample doped with 0.9 wt% Lu due to the degradation of pinning ability, density, crystallinity and connectivity between grains. Similarly, the presence of the magnetic field results in the reduction of these properties as a consequence of the decrement in the flux pinning in the samples prepared. Namely, the maximum \( T_{c}^{onset} \) of 94.6 K and \( T_{c}^{offset} \) of 92.5 K are observed for the sample doped with 0.1 wt% Lu whereas the minimum temperature values are obtained to be about 71.2 and 50.3 K for the sample doped with 0.9 wt% Lu. In fact, the \( T_{c}^{offset} \) value decreases to 20.5 K with the increment in the applied magnetic field up to 6 kG. Besides, the flux pinning energies of the samples decrease with ascending applied magnetic field. The pure sample has the flux pinning energy of 15,211 K at zero field while the maximum and minimum values are found to be about 16,722 K and 2,058 K for the samples added with 0.1 and 0.9 wt% Lu, respectively. The U 0 of 158 K at 6 kG applied magnetic field is obtained for the latter sample, showing that this sample exhibits much weaker flux pinning, lesser crystallinity and connectivity between grains compared to the other samples produced as a result of the stronger pair-breaking mechanism. The dissipation mechanism is also discussed by means of the magnetic field dependence of the activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.I.F. David, W.T.A. Harrison, J.M.F. Gunn, O. Moze, A.K. Soper, P. Day, J.D. Jorgensen, D.G. Hinks, M.A. Beno, L. Soderholm, D.W. Capone II, I.K. Schuller, C.U. Segre, K. Zhang, J.D. Grace, Nature 327, 310 (1987)

    Article  CAS  Google Scholar 

  2. S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68 (2010)

    Article  CAS  Google Scholar 

  3. M.E. Sagsoz, M. Ertugrul, U. Cevik, Mater. Lett. 60, 1778 (2006)

    Article  CAS  Google Scholar 

  4. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Res. Bull. 44, 1017 (2009)

    Article  CAS  Google Scholar 

  5. O. Ozturk, M. Akdogan, H. Aydin, M. Yilmazlar, C. Terzioglu, I. Belenli, Phys. B 399, 94 (2007)

    Article  CAS  Google Scholar 

  6. C. Terzioglu, O. Ozturk, A. Kilic, A. Gencer, I. Belenli, Physica C 434, 153 (2006)

    Article  CAS  Google Scholar 

  7. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C 423, 1190 (2005)

    Article  Google Scholar 

  8. P. Diko, Supercond. Sci. Technol. 13, 1202 (2000)

    Article  CAS  Google Scholar 

  9. K. Ogasawara, N. Sakai, M. Murakami, Supercond. Sci. Technol. 13, 688 (2000)

    Article  CAS  Google Scholar 

  10. A. Koblischka-Veneva, M.R. Koblischka, K. Ogasawara, M. Murakami, Cryst. Eng. 5, 265 (2002)

    Article  CAS  Google Scholar 

  11. L.-C. Liang, YBCO Superconductor Research Progress, 1st edn. (Nova Science publisher, 2008)

  12. T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)

    Article  CAS  Google Scholar 

  13. D. Bumin, E. Yanmaz, M. Basoglu, A. Gencer, J. Supercond. Nov. Magn. 24, 211 (2011)

    Article  CAS  Google Scholar 

  14. M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0857-8

    Google Scholar 

  15. M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0846-y

    Google Scholar 

  16. M.S. Ososfky, R.J. Soulen, S.A. Wolf, J.M. Broto, J.M. Rakoto, J.C. Ousset, G. Coffe, S. Askenazy, P. Pari, I. Bozovic, J.N. Eckstein, G.F. Virshup, Phys. Rev. Lett. 71, 2315 (1993)

    Article  Google Scholar 

  17. H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486 (2004)

    Article  CAS  Google Scholar 

  18. J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026 (2007)

    Article  CAS  Google Scholar 

  19. C.S. Yadav, P.L. Paulose, New J. Phys. 11, 103046 (2009)

    Article  Google Scholar 

  20. M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989)

    Article  CAS  Google Scholar 

  21. G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Physica C 160, 333 (1989)

    Article  CAS  Google Scholar 

  22. N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104 (1996)

    Article  CAS  Google Scholar 

  23. N.Y. Chen, R. Jonker, V.C. Matijasevic, H.M. Jaeger, J.E. Mooij, Appl. Phys. Lett. 67, 133 (1995)

    Article  CAS  Google Scholar 

  24. R. Kalyanaraman, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 6636 (1999)

    Article  CAS  Google Scholar 

  25. F. Rullier-Albenque1, P.A. Vieillefond, H. Alloul, A. W. Tyler, P. Lejay, J.F. Marucco, Europhys. Lett. 50, 81 (2000)

    Google Scholar 

  26. X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindfleish, M. Tomsic, J. Appl. Phys. 105, 103913 (2009)

    Article  Google Scholar 

  27. D. Yazici, M. Erdem, B. Ozcelik, J. Supercond. Nov. Magn. 25, 293 (2012)

    Article  CAS  Google Scholar 

  28. Y. Zalaoglu, G. Yildirim, C. Terzioglu, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0723-8

    Google Scholar 

  29. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I.G. Eldeen, J. Supercond. Nov. Magn. 25, 739 (2012)

    Article  CAS  Google Scholar 

  30. G. Yildirim, S. Bal, A. Varilci, J. Supercond. Nov. Magn. 25, 1655 (2012)

    Article  CAS  Google Scholar 

  31. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 25, 381 (2012)

    Article  CAS  Google Scholar 

  32. O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz, C. Terzioglu, Mater. Sci: Mater Electron 23, 511 (2012)

    Article  CAS  Google Scholar 

  33. E. Yucel, C. Terzioglu, A. Varilci, A. Gencer, I. Belenli, Chinese J. Phys. 49, 809 (2011)

    CAS  Google Scholar 

  34. J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)

    Article  CAS  Google Scholar 

  35. G.L. Bhalla, A. Malik Pratima, K.K. Singh, Physica C 391, 17 (2003)

    Article  CAS  Google Scholar 

  36. J.S. Moodera, R. Meservey, J.E. Tkaczyk, C.X. Hao, G.A. Gibson, P.M. Tedrow, Phys. Rev. B 37, 619 (1988)

    Article  CAS  Google Scholar 

  37. M. Tinkham, Introduction to superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  38. B. Ozkurt, B. Ozcelik, J. Low Temp. Phys. 156, 22 (2009)

    Article  Google Scholar 

  39. N.P. Liyanawaduge, A. Kumar, S. Kumar, B.S.B. Karunarathne, V.P.S. Awana, J. Supercond. Nov. Magn. 25, 311 (2012)

    Article  Google Scholar 

  40. G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 893 (2012)

    Article  CAS  Google Scholar 

  41. M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961 (2012)

    Article  CAS  Google Scholar 

  42. G. Yildirim, S. Bal, A. Varilci, J. Supercond. Nov. Magn. 25, 1665 (2012)

    Article  CAS  Google Scholar 

  43. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)

    Article  Google Scholar 

  44. Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. 131, 2486 (1963)

    Article  Google Scholar 

  45. Y. Iye, T. Tamegai, H. Takeya, H. Takei, Jpn. J. Appl. Phys. Pt. 26, L1057 (1987)

    Article  CAS  Google Scholar 

  46. B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, Phys. Rev. B 37, 7861 (1988)

    Article  CAS  Google Scholar 

  47. L.T. Sagdahl, S. Gjolmesli, T. Laegreid, K. Fossheim, W. Assmus, Phys. Rev. B 42, 6797 (1990)

    Article  CAS  Google Scholar 

  48. S. Celebi, S. Nezir, A. Gencer, E. Yanmaz, M. Altunbas, J. Alloys Comp. 255, 5 (1997)

    Article  CAS  Google Scholar 

  49. M.M. Fang, V.G. Kogan, D.K. Finnemore, J.R. Clem, L.S. Chumbley, D.E. Farrel, Phys. Rev. B 37, 2334 (1988)

    Article  CAS  Google Scholar 

  50. S. Celebi, I. Karaca, A. Ozturk, S. Nezir, J. Alloys Comp. 268, 256 (1998)

    Article  CAS  Google Scholar 

  51. T.T.M. Palstra, B. Batlogg, R.B. Van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621 (1990)

    Article  CAS  Google Scholar 

  52. Y. Yeshurun, A.P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988)

    Article  CAS  Google Scholar 

  53. M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)

    Article  Google Scholar 

  54. N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana, J. Appl. Phys. 105, 07E315 (2009)

  55. S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloys Comp. 540, 260 (2012)

    Article  CAS  Google Scholar 

  56. X.J. Chen, V.V. Struzhkin, Z.G. Wu, H.Q. Lin, R.J. Hemley, H.K. Mao, Proc. Natl. Acad. Sci. U.S.A. 104, 3732 (2007)

    Article  CAS  Google Scholar 

  57. Y. Wang, H.H. Wen, EPL 81, 57007 (2008)

    Article  Google Scholar 

  58. M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0755-0

    Google Scholar 

  59. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575 (2010)

    Article  CAS  Google Scholar 

  60. A.I. Abou-Aly, M.T. Korayem, N.G. Gomaa, R. Awad, M.A. Al-Hajji, Spercond. Sci. Technol. 12, 147 (1999)

    Article  CAS  Google Scholar 

  61. E. Govea-Alcaide, M. Hernandez-Wolpez, A.J. Batista-Leyva, R.F. Jardim, P. Mune, Physica C 423, 51 (2005)

    Google Scholar 

  62. A.I. Abou-Aly, M.F. Mostafa, I.H. Ibrahim, R. Awad, M.A. Al-Hajji, Supercond. Sci. Technol. 15, 938 (2002)

    Article  CAS  Google Scholar 

  63. C. Attanasio, M. Salvato, R. Ciancio, M. Gombos, S. Pace, S. Uthayakumar, A. Vecchione, Physica C 411, 126 (2004)

    Article  CAS  Google Scholar 

  64. A.J. Batista-Laeyva, R. Cobas, M.T.D. Orlando, E. Altshuler, Supercond. Sci. Technol. 16, 857 (2003)

    Article  Google Scholar 

  65. H.H. Sung, H.C. Yang, H.C. Chen, H.E. Horng, B.C. Yao, Chin. J. Phys. 30, 247 (1992)

    CAS  Google Scholar 

  66. M.D. Sumption, M. Bhatia, S.X. Dou, M. Rindfliesch, M. Tomsic, L. Arda, M. Ozdemir, Y. Hascicek, E.W. Collings, Supercond. Sci. Technol. 17, 1180 (2004)

    Article  CAS  Google Scholar 

  67. J. Albrecht, Ch. Jooss, R. Warthmann, A. Forkl, H. Kronmuller, Phys. Rev. B 57, 10332 (1998)

    Article  CAS  Google Scholar 

  68. E. Govea-Alcaide, I. Garcia-Fornaris, P. Mune, R.F. Jardim, Eur. Phys. J. B 58, 373 (2007)

    Article  CAS  Google Scholar 

  69. P. Muné, E. Govea-Alcaide, R.F. Jardim, Physica C 384, 491 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Terzioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkoz, M.B., Nezir, S., Varilci, A. et al. Experimental and theoretical approaches on magnetoresistivity of Lu-Doped Y-123 superconducting ceramics. J Mater Sci: Mater Electron 24, 1536–1545 (2013). https://doi.org/10.1007/s10854-012-0967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0967-3

Keywords

Navigation