Skip to main content
Log in

Effect of sintering temperature on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, structural, dielectric and ferroelectric properties of barium zirconate titanate ferroelectric ceramics have been investigated. The specimens were synthesized using a solid state reaction technique. The XRD analysis reveals that the synthesized compound was formed with no secondary phases. As the sintering temperature increases from 1,200 to 1,300 °C, the average grain size is observed to increase from ~0.39 to ~6.15 μm. The dielectric measurements as a function of temperature show a decrease in Curie temperature (TC) on increasing the sintering temperature. The decrease in Curie temperature is attributed to the substitution of Zr+4 whose ionic radius is larger than Ti+4. A large increase in the dielectric constant with the increase in grain size is observed. The remanent polarization is also observed to increase with the increase in grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.M. Neirman, The Curie point temperature of Ba(Ti1−x Zr x )O3 solid solutions. J. Mater. Sci. 23, 3973–3980 (1988)

    Article  CAS  Google Scholar 

  2. Y. Sakabe, K. Minai, K. Wakino, High-dielectric constant ceramics for base metal monolithic capacitor. Jpn. J. Appl. Phys. 20(Supplement 20–4), 147–150 (1981)

    CAS  Google Scholar 

  3. H. Nemoto, I. Oda, Direct examinations of PTC action of single grain boundaries in semiconducting BaTiO3 Ceramics. J. Am. Ceram. Soc. 63, 398 (1980)

    Article  CAS  Google Scholar 

  4. M. Kuwabara, K. Morimo, T. Matsunaga, Single grain boundaries in PTC resistors. J. Am. Ceram. Soc. 79, 997 (1996)

    Article  CAS  Google Scholar 

  5. M. McQuarrie, F.W. Behnke, Structural and dielectric studies in the system (Ba, Ca) (Ti, Zr) O3. J. Am. Ceram. Soc. 37, 539 (1954)

    Article  CAS  Google Scholar 

  6. A. Dixit, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, Studies on the relaxor behaviour of sol-gel derived Ba (Zrx Ti1−x) O3 (0.30 ≤ x ≤ 0.70) thin films. J. Mater. Sci. 41, 87–96 (2006)

    Article  CAS  Google Scholar 

  7. D. Hennings, A. Schnell, G. Simon, Diffuse ferroelectric phase transitions in BaTi1−y Zry O3. J. Am. Ceram. Soc. 65, 539–544 (1982)

    Article  CAS  Google Scholar 

  8. Y. Zhi, A. Chen, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1−x Zr x )O3 ceramics. J. Appl. Phys. 92, 1489–1493 (2002)

    Article  Google Scholar 

  9. R. C. Kell, N. J. Hellicar, Structural transformations in transformer materials of barium-titanate-zirconate. Acustica 6, 235–238 (1956)

    Google Scholar 

  10. R. Farhi, M.E.I. Marssi, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric Ba(Ti1−xZrx)O3 ceramics. Eur. Phys. J. B 9, 599–604 (1999)

    Article  CAS  Google Scholar 

  11. Y. Zhi, A. Chen, R. Guo, A.S. Bhalla, Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J. Appl. Phys. 92, 2655–2657 (2002)

    Article  Google Scholar 

  12. S. K. Rout, Ph. D. Thesis, Phase formation and dielectric studies of some BaO-TiO2-ZrO2 based perovskite system. (2006)

  13. M. Deri, Ferroelectric Ceramics (Gordon and Breach, New York, 1969)

    Google Scholar 

  14. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  15. E. Brajer, Polycrystalline ceramic material. US Patent 2708243: 1955

  16. X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of BaTi1−y Zry O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004)

    Article  CAS  Google Scholar 

  17. C. Heremans, H.L. Tuller, Field-induced antiferroelectric-ferroelectric phase transitions in the Pb0.98 La0.02 (Zr0.70 Hf0.30)1−xTixO3 system. J. Appl. Phys. 87, 1458–1486 (2000)

    Article  CAS  Google Scholar 

  18. E. F. Alberta, P. W. Rehrig, W. S. Hackenberger, C. A. Randall, T. R. Shrout, High temperature morphotrophic phase boundary piezoelectrics, IEEE Ultrasonics Symposium 1991–1994 (2003). doi:10.1109/ULTSYM.2003.1293307

  19. C. Dong, Powder-X: Windows-95-based program for powder X-ray diffraction data processing. 32:838

  20. W. Cai, C. Fu, J. Gao, H. Chen, Effect of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. J Alloys Compd 480, 870–873 (2009)

    Article  CAS  Google Scholar 

  21. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

    Google Scholar 

  22. S.W. Zhang, H. Zhang, B.P. Zhang, G. Zhao, Dielectric and piezoelectric properties of characteristics of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. J Eur Ceram Soc 29, 3235–3242 (2009)

    Article  CAS  Google Scholar 

  23. W.D. Kingrey, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, USA, 1976)

    Google Scholar 

  24. J. Tullis, R.A. Yund, Grain growth kinetics of quartz and calcite aggregates. J Geol 90-3, 301–308 (1982)

    Article  Google Scholar 

  25. M.W. Barsoum, Fundamentals of Ceramics (McGraw Hill Companies, New York, 1996)

    Google Scholar 

  26. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, USA, 2010)

    Google Scholar 

  27. S. Tsurekawa, K. Ibaraki, K. Kawahara, T. Watanabe, The continuity of ferroelectric domains at grain boundaries in lead zirconate titanate. Scripta Materialia 56, 577–580 (2007)

    Article  CAS  Google Scholar 

  28. K. Ramam, M. Lopez, Barium modified lead lanthanum strontium zirconium niobium titanate for dielectric and piezoelectric properties. J. Eur. Ceram. Soc. 27, 3141–3147 (2007)

    Article  CAS  Google Scholar 

  29. S.B. Reddy, K.P. Rao, M.S.R. Rao, Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics. Appl. Phys. Lett. 91, 022917 (2007)

    Article  Google Scholar 

  30. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)

    Article  CAS  Google Scholar 

  31. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor Appl. Phys. Lett. 80, 2153 (2002)

    CAS  Google Scholar 

  32. S.G. Lee, D.S. Kan, Dielectric properties of ZrO2 doped (Ba, Sr, Ca) TiO3 ceramics for tunable microwave device applications. Mater. Lett. 57, 1629 (2002)

    Article  Google Scholar 

  33. W.R. Huo, Y.F. Qu, Effects of Bi1/2Na1/2TiO3 on the Curie temperature and the PTC effects of BaTiO3-based positive temperature coefficient ceramics. Sens. Actuators, A 128, 265 (2006)

    Article  Google Scholar 

  34. N. Sawangwan, J. Barrel, K. Mackenzie, T. Tunaksiri, The effect of Zr content on electrical properties of Ba(Ti1−xZrx)O3 ceramics. Appl. Phys. A 90, 723 (2008)

    Article  CAS  Google Scholar 

  35. P. Ganguly, A.K. Jha, Structural and electrical properties of Ba5-xCaxSmTi3Nb7O30 (x = 0–5) ferroelectric ceramics. J. Alloys Compd 495, 7–12 (2010)

    Article  CAS  Google Scholar 

  36. R.C. Buchanan, Ceramic Materials for Electronics (Marcel Dekker, New York, 1991)

    Google Scholar 

  37. N. Ponpandian, A. Narayanasamy, Influence of grain size and structural changes on the electrical properties of nanocrystalline zinc ferrite. J. Appl. Phys. 92, 2770 (2002)

    Article  CAS  Google Scholar 

  38. S.A. Fadnavis, A.G. Katpatal, Anomalous dc conductance in Nd+3-doped ferroelectric lead germanate single crystal. Bull. Mater. Sci. 20, 1097 (1997)

    Article  CAS  Google Scholar 

  39. P. Ganguly, A.K. Jha, Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: a comparative study. Mater. Res. Bull. 46, 692 (2011)

    Article  CAS  Google Scholar 

  40. R.K. Dwivedi, D. Kumar, O. Prakash, Valence compensated perovskite oxide system Ca1−xLaxTi1−xCrxO3. J. Mater. Sci. 36, 3641–3648 (2001)

    Article  CAS  Google Scholar 

  41. U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings, R. Waser, Dielectric properties of Ba(Ti, Zr)O3-based ferroelectrics for capacitor applications. J. Am. Ceram. Soc. 84, 759 (2001)

    Article  CAS  Google Scholar 

  42. V. M. Goldschmidt, Shrifter Nofke Videnskaps-Akad. Oslo I: mat-Naturv. Kl. No. 2, 8 (1926)

  43. H.T. Martirena, J.C. Burfoot, Grain size effects on properties of some ferroelectric ceramics. J. Phys. C: Solid State Phys. 7, 3182 (1974)

    Article  CAS  Google Scholar 

  44. G. Burns, Dirty displacive ferroelectrics. Phys. Rev. B 13, 215 (1976)

    Article  CAS  Google Scholar 

  45. M. Kumar, A. Garg, R. Kumar, M.C. Bhatnagar, Structural, dielectric and ferroelectric studies of Ba0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol-gel method. Phys. B 403, 1819 (2008)

    Article  CAS  Google Scholar 

  46. N. Nanakorn, P. Jalupoom, N. Vaneesorn, A. Thanaboonsombut, Dielectric and ferroelectric properties of BaTi1−x Zrx O3 ferroelectric properties. Ceram. Int. 34, 779–782 (2008)

    Article  CAS  Google Scholar 

  47. P.A. Jha, A.K. Jha, Influence of processing conditions on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics. J. Alloys Compd 513, 580–585 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 15152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, P.A., Jha, A.K. Effect of sintering temperature on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics. J Mater Sci: Mater Electron 24, 1511–1518 (2013). https://doi.org/10.1007/s10854-012-0963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0963-7

Keywords

Navigation