Effects of annealing and deposition temperature on the structural and optical properties of AZO thin films

  • I. Kars Durukan
  • Y. Özen
  • K. Kizilkaya
  • M. K. Öztürk
  • T. Memmedli
  • S. Özçelik
Article

Abstract

Al-doped ZnO (AZO) thin films were deposited on p- type Si(100) substrate by r.f magnetron sputtering at 200, 300 and 400 °C substrate temperatures. The deposited films were annealed in air atmosphere for 1 h at temperatures of 700, 800 and 900 °C. The deposition temperature and post-deposition annealing effects on structural and optical properties of the AZO samples were analyzed using X-ray diffraction, atomic force microscope and photoluminescence (PL). After annealing, the value of full width half maximum of the diffraction peaks was decreased as well as, the intensity of visible and strong UV PL emission peaks were increased with temperature. However, the deep-level emission related with zinc point defects was removed by annealing of the samples. Results revealed that all of the as-deposited and annealed AZO films have hexagonal structure along (002) direction and their crystallinity were improved with the increased deposition and post-growth annealing temperatures. In addition, the surface roughness and the particle size of the films were increased with increased deposition and annealing temperatures.

References

  1. 1.
    U. Ozgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  2. 2.
    D. Zang, P. Fan, X. Cai, J. Huang, L. Ru, Z. Zeng, G. Liang, Y. Huang, Appl. Phys. A 437–441 (2009)Google Scholar
  3. 3.
    S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, J. Cryst. Growth 287, 78–84 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Zang, P. Fan, X. Cai, J. Huang, L. Ru, Z. Zheng, G. Liang, Y. Huang, Appl. Phys. A 97, 437–441 (2009)CrossRefGoogle Scholar
  5. 5.
    P. Samarasekara, N.U.S. Yapa, N.T.R.N. Kumara, M.V.K. Perera, Bull. Mater. Sci. 30(2), 113–116 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, F. Dipietrantonio, E. Verona, P. Verardi, L.C. Nistor, C. Ghica, G. Van Tendeloo, M. Dinescu, Superlattices Microstruct. 42, 79–84 (2007)CrossRefGoogle Scholar
  7. 7.
    K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, B.C. Shin, T. Balasubramanian, J. Alloys Compd 478, 54–58 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Wang, Z. Chen, Y. He, L. Li, D. Zang, Appl. Surf. Sci. 255, 6881–6887 (2009)CrossRefGoogle Scholar
  9. 9.
    Q.P. Wang, D.H. Zhang, H.L. Ma, X.H. Zhang, X.J. Zhang, Appl. Surf. Sci. 220, 12–18 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Prasada Rao, M.C. Santhosh Kumar, A. Safarulla, V. Genesan, S.R. Barman, C. Sanjeeviraja, Phys. B 405, 2226–2231 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Baca, G. Juarez, H. Solache, J. Andraca, J. Martinez, A. Asparza, T. Kryshtab, R. Pena, Mater. Sci. Eng 8, 012041 (2010)Google Scholar
  12. 12.
    B. Cao, W. Cai, H. Zeng, Apply. Phys. Lett 88, 161101 (2006)Google Scholar
  13. 13.
    A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhang, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotecnology 18, 8 (2007)CrossRefGoogle Scholar
  14. 14.
    N.H. Alvi, K. ul Hasan, O. Nur, M. Willanger, Nanoscale Res. Lett. 6, 130 (2011)CrossRefGoogle Scholar
  15. 15.
    B.D. Cullity, in Elements of X-Ray Diffractions, vol 102. (Addison-Wesley, Reading, 1978)Google Scholar
  16. 16.
    X. Deng, H. Deng, M. Wei, J. Chen, J. Mater. Sci.: Mater. Electron. 23, 413–417 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Wang, X. Liu, J. Zhang, J. Phys: Conf. Ser. 188, 012017 (2009)CrossRefGoogle Scholar
  18. 18.
    W.J. Lee, C.R. Cho, K.M. Cho, S.Y. Jeong, J. Korean Phys. Soc 47, 296 (2005)CrossRefGoogle Scholar
  19. 19.
    W. Yang, Z. Wu, Z. Liu, A. Pang, Y. Tu, Z. Feng, Thin Solid Films 519, 31–36 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561–572 (2010)CrossRefGoogle Scholar
  21. 21.
    Z. Fang, Y. Wang, D. Xu, Y. Tan, X. Liu, Opt. Mater. 26, 239–242 (2004)CrossRefGoogle Scholar
  22. 22.
    D.H. Zhang, Z.Y. Xue, Q.P. Wang, J. Phys. D Appl. Phys. 35, 2837–2840 (2002)CrossRefGoogle Scholar
  23. 23.
    L.M. Li, Z.F. Du, T.H. Wang, Sens. Actuators, B 147, 165–169 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Djelloul, M.-S. Aida, J. Baugdira, J. Lumin. 130, 2113–2117 (2010)CrossRefGoogle Scholar
  25. 25.
    F.K. Shan, Y.S. Yu, J. Eur. Ceram. Soc. 24, 1869–1872 (2004)CrossRefGoogle Scholar
  26. 26.
    S.-K. Wang, T.-C. Lin, S.-R. Jian, J.-Y. Juangb, J.S.C. Jangc, J.-Y. Tsengd, Appl. Surf. Sci. 258, 1261–1266 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • I. Kars Durukan
    • 1
    • 2
  • Y. Özen
    • 1
    • 2
  • K. Kizilkaya
    • 1
    • 2
  • M. K. Öztürk
    • 1
    • 2
  • T. Memmedli
    • 1
    • 2
  • S. Özçelik
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey
  2. 2.Photonics Research CenterGazi UniversityAnkaraTurkey

Personalised recommendations