Skip to main content
Log in

Superconducting properties and growth mechanism of layered structure in MgB2 bulks with Cu/Y2O3 co-doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bulk MgB2 samples containing Cu and Y2O3 have been prepared by conventional solid state reaction at 850 °C, and the structure and superconducting properties have been investigated. Differing from the structure in previous studies, a type of novel, layered structure was obtained in Cu/Y2O3-doped MgB2 sample. Furthermore, the critical current density (J c) at high field (>4 T) was improved compared to undoped, and Cu-doped MgB2 samples. After analyzing the phase composition, microstructure, and sintering process, it was found that Y2O3 and Cu are independent in providing effective pinning centers, and YB4 impurity should be responsible for the enhancement of J c as well as the increased irreversible magnetic field. However, J c at low field was slightly worsened, but still maintaining 105 A cm−2 at 0 T, since the intercrystalline connectivity was not seriously deteriorated. Finally, a possible growth model was put forward to describe the formation sequences of the layered structure. It was supposed that the formation of steps at low temperature originated from the coherent relationship between Mg and MgB2, while the steps formed at high temperature were related to the pinning effect of secondary phase during the migration of grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  CAS  Google Scholar 

  2. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  CAS  Google Scholar 

  3. D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, A. Hayward, T. He, J.S. Slusky, P. Khalifah, I. Inumaru, M. Haas, Nature 410, 186–189 (2001)

    Article  CAS  Google Scholar 

  4. A. Vajpayee, V.P.S. Awanal, G.L. Bhalla, H. Kishan, Nanotechnology 19, 125708 (2008)

    Article  Google Scholar 

  5. D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, P.C. Canfield, Phys. Rev. Lett. 86, 2420–2422 (2001)

    Article  CAS  Google Scholar 

  6. K. Tachikawa, Y. Yamada, O. Suzuki, M. Enomoto, M. Aodaie, Physica C 382, 108–112 (2002)

    Article  CAS  Google Scholar 

  7. T. Masui, S. Lee, S. Tajima, Phys. Rev. B 70, 024504 (2004)

    Article  Google Scholar 

  8. A. Berenov, A. Serquis, X.Z. Liao, Y.T. Zhu, D.E. Peterson, Y. Bugoslavsky, K.A. Yates, M.G. Blamire, L.F. Cohen, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 17, 1093–1096 (2004)

    Article  CAS  Google Scholar 

  9. A. Tampieri, G. Celotti, S. Sprio, D. Rinaldi, G. Barucca, R. Caciuffo, Solid State Commun. 121, 497–500 (2002)

    Article  CAS  Google Scholar 

  10. Y. Zhao, Y. Feng, D.X. Huang, T. Machi, C.H. Cheng, K. Nakao, N. Chikumoto, Y. Fudamoto, N. Koshizuka, M. Murakami, Physica C 378–381, 122–126 (2002)

    Article  Google Scholar 

  11. W.J. Feng, T.D. Xia, T.Z. Liu, W.J. Zhao, Z.Q. Wei, Physica C 425, 144–148 (2005)

    Article  CAS  Google Scholar 

  12. Y. Kimishima, S. Takami, M. Uehara, T. Kuramoto, Physica C 445–448, 224–227 (2006)

    Article  Google Scholar 

  13. Z.Q. Ma, Y.C. Liu, Z.M. Gao, Scripta Mater. 63, 399–402 (2010)

    Article  CAS  Google Scholar 

  14. N. Varghese, K. Vinod, S. Rahul, K.M. Devadas, S. Thomas, S. Pradhan, U. Syamaprasad, J. Appl. Phys. 109, 033902 (2011)

    Article  Google Scholar 

  15. N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana, J. Appl. Phys. 105, 07E315 (2009)

    Article  Google Scholar 

  16. Y. Katsura, J. Shimoyamaa, A. Yamamotoa, S. Horiia, K. Kishio, Physica C 463–465, 225–228 (2007)

    Article  Google Scholar 

  17. J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A.D. Caplin, L.F. Cohen, J.L.M. Driscoll, L.D. Cooley, X. Song, D.C. Larbalestier, Appl. Phys. Lett. 81, 2026–2028 (2002)

    Article  CAS  Google Scholar 

  18. C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)

    Article  Google Scholar 

  19. Y.C. Liu, Q.Z. Shi, Q. Zhao, Z.Q. Ma, J. Mater. Sci.: Mater. Electron. 18, 855–861 (2007)

    Article  CAS  Google Scholar 

  20. Z.Q. Ma, Y.C. Liu, Q.Z. Shi, Q. Zhao, Z.M. Gao, Mater. Res. Bull. 44, 531–537 (2009)

    Article  CAS  Google Scholar 

  21. B. Jäger, S. Paluch, W. Wolfc, P. Herziga, O.J. Zogal, N. Shitsevalovad, Y. Padernod, J. Alloy. Compd. 383, 232–238 (2004)

    Article  Google Scholar 

  22. Z.X. Shi, M.A. Susner, M.D. Sumption, E.W. Collings, X. Peng, M. Rindfleisch, M.J. Tomsic, Supercond. Sci. Technol. 24, 065015 (2011)

    Article  Google Scholar 

  23. Z. Ma, Y. Liu, Q. Shi, Q. Zhao, Z. Gao, J. Alloy. Compd. 471, 105–108 (2009)

    Article  CAS  Google Scholar 

  24. Z.Y. Fan, D.G. Hinks, N. Newman, J.M. Rowell, Appl. Phys. Lett. 79, 87–89 (2001)

    Article  CAS  Google Scholar 

  25. J.M. Rowell, S.Y. Xu, X.H. Zeng, A.V. Pogrebnyakov, Q. Li, X.X. Xi, J.M. Redwing, W. Tian, X. Pan, Appl. Phys. Lett. 83, 102–104 (2003)

    Article  CAS  Google Scholar 

  26. B.J. Senkowicz, ProQuest Dissertations and Theses; Thesis (Ph. D.), University of Wisconsin, Madison, 2007

  27. M. Mudgela, V.P.S. Awana, G.L. Bhalla, H. Kishan, Solid State Commun. 147, 439–442 (2008)

    Article  Google Scholar 

  28. Q. Cai, Z.Q. Ma, Q. Zhao, Y.C. Liu, J. Supercond. Novel Magn. 24, 2013–2017 (2011)

    Article  CAS  Google Scholar 

  29. T. Gladman, Proc. R. Soc. Lond. 294, 298 (1966)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51077099), Program for New Century Excellent Talents in University and Seed Foundation of Tianjin University for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Liu, Y., Ma, Z. et al. Superconducting properties and growth mechanism of layered structure in MgB2 bulks with Cu/Y2O3 co-doping. J Mater Sci: Mater Electron 24, 1451–1457 (2013). https://doi.org/10.1007/s10854-012-0951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0951-y

Keywords

Navigation