Skip to main content
Log in

Novel process for synthesis of α-Fe2O3: microstructural and optoelectronic investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel chemical synthesis method has been successfully employed for the preparation of n type α-Fe2O3 nanoparticles. Thin films of annealed Fe2O3 powders processed on glass substrates using spin coating technique. The effects of process temperature on the structural, morphological, electrical transport and optical properties were studied. X-ray diffraction study revealed formation of single phase nanocrystalline hexagonal α-Fe2O3. Microstructural analysis confirms nanostructured morphology. Dc electrical conductivity measurement reveled the semiconducting nature with room temperature electrical conductivity increased from 10−4 to 10−3 (Ω cm)−1 as process temperature of Fe2O3 increased from 400 to 700 °C respectively. The n-type electrical conductivity is confirmed from thermo-emf measurement with no appreciable change in thermoelectric power after increasing processing temperature. The decrease in the band gap energy from 3.88 to 2.62 eV was observed after increasing process temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatz, G. Goglio, Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. J. Mater. Chem. 21, 4393–4401 (2011)

    Article  CAS  Google Scholar 

  2. J.B. Wacker, V.K. Parashar, M.A.M. Gijs, Anisotropic magnetic porous assemblies of oxide nanoparticles interconnected via silica bridges for catalytic application. Langmuir 27, 4380–4385 (2011)

    Article  CAS  Google Scholar 

  3. S. Brulé, M. Levy, C. Wilhelm, D. Letourneur, F. Gazeau, C. Ménager, C.L. Visage, Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv. Mater. 23, 787–790 (2011)

    Article  Google Scholar 

  4. M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, S. Jon, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. 47, 5362–5365 (2008)

    Article  CAS  Google Scholar 

  5. E. Valero, S. Tambalo, P. Marzola, M. Ortega-Muñoz, F.J. López-Jaramillo, F. Santoyo-González, J.D. de López, J.J. Delgado, J.J. Calvino, R. Cuesta, J.M. Domínguez-Vera, N. Gálvez, Magnetic nanoparticles-templated assembly of protein subunits: a new platform for carbohydrate-based MRI nanoprobes. J. Am. Chem. Soc. 133, 4889–4895 (2011)

    Article  CAS  Google Scholar 

  6. A. Ethirajan, U. Wiedwald, H.-G. Boyen, B. Kern, L. Han, A. Klimmer, F. Weigl, G. Kästle, P. Ziemann, K. Fauth, J. Cai, R.J. Behm, A. Romanyuk, P. Oelhafen, P. Walther, J. Biskupek, U. Kaiser, A micellar approach to magnetic ultra-high density data storage media—extending the limits of current colloidal methods. Adv. Mater. 19, 406–410 (2007)

    Article  CAS  Google Scholar 

  7. J. Dong, Z. Xu, S.M. Kuznicki, Magnetic multi-functional nano composites for environmental applications. Adv. Funct. Mater. 19, 1268–1275 (2009)

    Article  CAS  Google Scholar 

  8. T.P. Raming, A.J.A. Winnubst, C.M. Kats, P.A. Philipse, The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles. J. Colloid Interface Sci. 249, 346–350 (2002)

    Article  CAS  Google Scholar 

  9. L.-S. Zhong, H. Jin-Song, H.-P. Liang, A.-M. Cao, W.-G. Song, L.-J. Wan, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18, 2426–2431 (2006)

    Article  CAS  Google Scholar 

  10. B. Wanga, H. Lv, H. Zhao, C. Zheng, Experimental and simulated investigation of chemical looping combustion of coal with Fe2O3 based oxygen carrier. Procedia Eng. 16, 390–395 (2011)

    Article  Google Scholar 

  11. G. Wua, X. Tana, G. Li, C. Hu, Effect of preparation method on the physical and catalytic property of nanocrystalline Fe2O3. J. Alloy. Compd. 504, 371–376 (2010)

    Article  Google Scholar 

  12. A.P. Morello, R. Burrill, E. Mathiowitz, Preparation and characterization of poly (methylmethacrylate)-iron (III) oxide microparticles using a modified solvent evaporation method. J. Microencapsul. 24, 476–491 (2007)

    Article  CAS  Google Scholar 

  13. M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z.L. Wang, Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large scale synthesis, formation mechanism and properties. Angew. Chem. Int. Ed. 44, 2–6 (2005)

    Google Scholar 

  14. S.U. Sonavane, M.B. Gawande, S.S. Deshpande, A. Venkataraman, R.V. Jayaram, Chemoselective transfer hydrogenation reactions over nanosized γ-Fe2O3 catalyst prepared by novel combustion route. Catal. Commun. 8, 1803–1806 (2007)

    Article  CAS  Google Scholar 

  15. P. Chauhan, S. Annapoorni, S.K. Trikha, Humidity-sensing properties of nanocrystalline hematite thin films prepared by sol–gel processing. Thin Solid Films 346, 266–268 (1999)

    Article  CAS  Google Scholar 

  16. S.L. Patil, S.G. Pawar, A.T. Mane, M.A. Chougule, V.B. Patil, Nanocrystalline ZnO thin films: optoelectronic and gas sensing properties. J. Mater. Sci. Mater. Electron. 21, 1332–1336 (2010)

    Article  CAS  Google Scholar 

  17. S.G. Pawar, M.A. Chougule, B.T. Raut, P.R. Godse, S.A. Pawar, S. Sen, V.B. Patil, Nanocrystalline TiO2 thin films: NH3 monitoring and physical characterization. J. Mater. Sci. Mater. Electron. 23, 273–279 (2012)

    Article  CAS  Google Scholar 

  18. D.M. Jundale, P.B. Joshi, S. Sen, V.B. Patil, Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties. J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-011-0616-2

  19. M.A. Chougule, S.G. Pawar, P.R. Godse, R.D. Sakhare, S. Sen, V.B. Patil, Sol gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties. J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012)

    Article  CAS  Google Scholar 

  20. S.R. Nalage, M.A. Chougule, S. Sen, P.B. Joshi, V.B. Patil, Sol gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 520, 4835–4840 (2012)

    Article  CAS  Google Scholar 

  21. S.L. Patil, S.G. Pawar, M.A. Chougule, S. Sen, V.B. Patil, Nanocrystalline ZnO thin films: Effect of annealing on microstructural and optoelectronic properties. J. Alloys Compd. 509, 10055–10061 (2011)

    Article  CAS  Google Scholar 

  22. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869–1871 (2002)

    Article  CAS  Google Scholar 

  23. A. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287–2294 (1998)

    Article  CAS  Google Scholar 

  24. P.K. Ghosh, R. Maity, K.K. Chattopadhyay, Electrical and optical properties of highly conducting CdO:F thin film deposited by sol–gel dip coating technique. Sol. Energy Mater. Sol. Cells 81, 279–289 (2004)

    Article  CAS  Google Scholar 

  25. K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, Y. Nakanishi, DC reactive magnetron sputtered CdO thin films. Mater. Lett. 28, 307–312 (1996)

    Article  CAS  Google Scholar 

  26. C.N.R. Rao, S.R.C. Vivekchand, K. Biswas, A. Govindaraj, Synthesis of inorganic nanomaterials. Dalton Trans. 34, 3728–3749 (2007)

    Article  Google Scholar 

  27. S.G. Pawar, S.L. Patil, M.A. Chougule, V.B. Patil, Synthesis and characterization of nanocrystalline TiO2 thin films. J. Mater. Sci. Mater. Electron. 22, 260–264 (2011)

    Article  CAS  Google Scholar 

  28. Y.K. Jeong, G.M. Choi, Nonstoichiometry and electrical conduction of CuO. J. Phys. Chem. Solids 57, 81–84 (1996)

    Article  CAS  Google Scholar 

  29. B. Pejova, T. Kocareva, M. Najdoski, I. Grozdanov, A solution growth route to nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 165, 271–278 (2000)

    Article  CAS  Google Scholar 

  30. J.H. Lee, K.H. Ko, B.O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J. Cryst. Growth 247, 119–125 (2003)

    Article  CAS  Google Scholar 

  31. R. Hong, J. Huang, H. He, Z. Fan, J. Shao, Influence of different post-treatments on the structure and optical properties of zinc oxide thin films. Appl. Surf. Sci. 242, 346–352 (2005)

    Article  CAS  Google Scholar 

  32. A.M. Chaparro, M.A. Martinez, C. Guillen, R. Bayon, J. Herrero, M.T. Gutierrez, SnO2 substrate effects on the morphology and composition of chemical bath deposited ZnSe thin films. Thin Solid Films 361–362, 177–182 (2000)

    Article  Google Scholar 

  33. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band-gap energies of sol–gel-derived SrTiO3 thin films. Appl. Phys. Lett. 79, 3767 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors (VBP) are grateful to DAE-BRNS, for financial support through the scheme no.2010/37P/45/BRNS/1442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navale, S.T., Bandgar, D.K., Nalge, S.R. et al. Novel process for synthesis of α-Fe2O3: microstructural and optoelectronic investigations. J Mater Sci: Mater Electron 24, 1422–1430 (2013). https://doi.org/10.1007/s10854-012-0944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0944-x

Keywords

Navigation