Skip to main content
Log in

Hysteresis loops of MgB2 + Co composite tapes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The (MgB2)1−x Co x composite tapes fabricated by the ex situ PIT method were investigated. The structural and magnetic properties were characterized. Only MgB2 and Co phases were observed in the composites while x ≤ 0.2. A superconducting transition temperature was stable for these samples. Enhancement of the critical current density is found for x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)

    Article  CAS  Google Scholar 

  2. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Article  CAS  Google Scholar 

  3. S.X. Dou, A.V. Pan, S. Zhou, M. Ionescu, X.L. Wang, J. Horvat, H.K. Liu, P.R. Munroe, J. Appl. Phys. 94, 1850 (2003)

    Article  CAS  Google Scholar 

  4. M. Eisterer, Supercond. Sci. Technol. 20, R47 (2007)

    Article  CAS  Google Scholar 

  5. X.F. Pan, T.M. Shen, G. Li, C.H. Cheng, Y. Zhao, Phys. Stat. Solid. A 204, 1555 (2007)

    Article  CAS  Google Scholar 

  6. N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana, J. Appl. Phys. 105(07), E315 (2009)

    Article  Google Scholar 

  7. C. Yao, X. Zhang, D. Wang, Z. Gao, L. Wang, Y. Qi, C. Wang, Y. Ma, S. Awaji, K. Watanabe, Supercond. Sci. Technol. 24, 055016 (2011)

    Article  Google Scholar 

  8. T.H. Alden, J.D. Livingston, J. Appl. Phys. 37, 3551 (1966)

    Article  CAS  Google Scholar 

  9. C.C. Koch, G.R. Love, J. Appl. Phys. 40, 3582 (1969)

    Article  CAS  Google Scholar 

  10. A. Snezhko, T. Prozorov, R. Prozorov, Phys. Rev. B 71, 024527 (2005)

    Article  Google Scholar 

  11. C. Cheng, Y. Zhao, Appl. Phys. Lett. 89, 252501 (2006)

    Article  Google Scholar 

  12. K.Q. Ruan, Z.M. Lv, H.Y. Wu, S.L. Huang, M. Li, Z.Q. Pang, Q.Y. Wang, Y. Feng, G. Yan, J. Supercond. Nov. Magn. 21, 237 (2008)

    Article  CAS  Google Scholar 

  13. T. Kuroda, T. Nakane, H. Kumukura, Phys C 469, 9 (2009)

    Article  CAS  Google Scholar 

  14. E. Taylan Koparan, A. Surdu, A. Sidorenko, E. Yanmaz, Phys. C. 473, 1 (2012)

    Article  CAS  Google Scholar 

  15. M. Kühberger, G. Gritzner, Phys. C. 370, 39 (2002)

    Article  Google Scholar 

  16. E. Kuzmann, Z. Homonnay, Z. Klencsar, M. Kühberger, A. Vertes, G. Gritzner, Supercond. Sci. Technol. 15, 1479 (2002)

    Article  CAS  Google Scholar 

  17. M.A. Aksan, M.E. Yakinci, A. Guldeste, J. Alloy. Compd. 424, 33 (2006)

    Article  CAS  Google Scholar 

  18. P.N. Togoulev, N.M. Suleimanov, K. Conder, Physica C 450, 45 (2006)

    Article  CAS  Google Scholar 

  19. S. Treiber, B. Stuhlofer, H.-U. Habermeier, J. Albrecht, Supercond. Sci. Technol. 22, 045007 (2009)

    Article  Google Scholar 

  20. G.K. Williamson, W. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  21. M. Jones, R. Marsh, J. Am. Chem. Soc. 76, 1434 (1954)

    Article  CAS  Google Scholar 

  22. Natl. Bur. Stand. (U.S.) Monogr. 25 (1966) 10

  23. O. Kitakami, H. Sato, Y. Shimada, F. Sato, M. Tanaka, Phys. Rev. B 56, 13849 (1997)

    Article  CAS  Google Scholar 

  24. S.V. Komogortsev, R.S. Iskhakov, ChN Barnakov, N.A. Momot, V.K. Maltsev, A.P. Kozlov, Phys. Met. Metallogr. 109, 130 (2010)

    Article  Google Scholar 

  25. R.S. Iskhakov, M.M. Brushtunov, I.A. Turpanov, Fiz. Met. Metalloved. 66, 469 (1988)

    CAS  Google Scholar 

  26. K. Huller, G. Dietz, R. Hausmann, K. Kolpin, J. Magn. Magn. Mater. 53, 103 (1985)

    Article  Google Scholar 

  27. X. Batlle, V. Franco, A. Labarta, J. Appl. Phys. 88, 1576 (2000)

    Article  CAS  Google Scholar 

  28. J. Horvat, S. Soltanian, A.V. Pan, X.L. Wang, J. Appl. Phys. 96, 4342 (2004)

    Article  CAS  Google Scholar 

  29. D.M. Gokhfeld, D.A. Balaev, M.I. Petrov, S.I. Popkov, K.A. Shaykhutdinov, V.V. Valkov, J. Appl. Phys. 109, 033904 (2011)

    Article  Google Scholar 

  30. V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, J. Karpinski, Phys. Rev. Lett. 102, 117001 (2009)

    Article  Google Scholar 

  31. S. Altin, D.M. Gokhfeld, Phys C 471, 217 (2011)

    Article  CAS  Google Scholar 

  32. K.A. Shaikhutdinov, D.A. Balaev, S.I. Popkov, M.I. Petrov, Phys. Solid State 45, 1866 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is partly supported by project No. 20 of RAS program “Quantum mesoscopic and disordered structures” and grant No. 11-02-98007-p of Russian foundation for basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Altin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altin, E., Gokhfeld, D.M., Komogortsev, S.V. et al. Hysteresis loops of MgB2 + Co composite tapes. J Mater Sci: Mater Electron 24, 1341–1347 (2013). https://doi.org/10.1007/s10854-012-0931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0931-2

Keywords

Navigation