Skip to main content
Log in

Microstructural stability of Ag sinter joining in thermal cycling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a heat-resistant die attach technology processed at low temperatures, three Ag filler-based sinter joining materials have been proposed. Among these, Ag flake pastes exhibited the greatest potential. Joining was carried out by sintering Ag nanoparticles/flakes in air at 200 °C for 60 min. All of the joined samples survived up to 1,000 thermal cycles in a temperature range from −40 to 180/250 °C with a 30 min dwell time. In particular, the joining strengths with the Ag micron and, Ag nano-thick flake pastes maintained excellent strength. Neither thermal fatigue cracks nor large voids were observed in the Ag sintered layers. Thus, low-temperature and low-pressure sinter joining with Ag flakes is expected to have an application in high power semiconductor devices for ultra-high temperature operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Katz, C.H. Lee, K.L. Tai, Mater. Chem. Phys. 37, 303–328 (1994)

    Article  CAS  Google Scholar 

  2. P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90(6), 1065–1076 (2002)

    Article  Google Scholar 

  3. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. 41B, 824–832 (2010)

    CAS  Google Scholar 

  4. W. Wondrak, R. Held, E. Niemann, U. Schmid, IEEE Trans. Ind. Electron. 48(2), 307–308 (2001)

    Article  Google Scholar 

  5. Y. Sugawara, Mater. Sci. Forum 457–460, 963–968 (2004)

  6. M.A. Khan, Q. Chen, M.S. Shur, B.T. Dermott, J.A. Higgins, J. Burm, W.J. Schaff, L.F. Eastman, Solid State Electron. 41(10), 1555–1559 (1997)

    Article  CAS  Google Scholar 

  7. T. Funaki, J.C. Balda, J. Junghans, A.S. Kashyap, H.A. Mantooth, F. Barlow, T. Kimoto, T. Hikihara, IEEE Trans. Power Electron. 22(4), 1321–1329 (2007)

    Article  Google Scholar 

  8. K.S. Kim, C.H. Yu, N.H. Kim, N.K. Kim, H.J. Chang, E.G. Chang, Microelectron. Reliab. 43, 757–763 (2003)

    Article  CAS  Google Scholar 

  9. W.D. Zhuang, P.C. Chang, F.Y. Chou, R.K. Shiue, Microelectron. Reliab. 41, 2011–2021 (2001)

    Article  Google Scholar 

  10. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2001)

    Article  CAS  Google Scholar 

  11. K. Suganuma, S.J. Kim, K.S. Kim, JOM 61(1), 64–71 (2009)

    Article  CAS  Google Scholar 

  12. R.W. Johnson, C. Wang, Y. Liu, J.D. Scofield, IEEE Trans. Electron. Packag. Manuf. 30(3), 182–193 (2007)

    Article  CAS  Google Scholar 

  13. P. Hagler, R.W. Johnson, L.Y. Chen, IEEE Trans. Compon. Packag. Manuf. Technol. 1(4), 630–639 (2011)

    Article  CAS  Google Scholar 

  14. R. Kisiel, Z. Szczepański, Microelectron. Reliab. 49, 627–629 (2009)

    Article  CAS  Google Scholar 

  15. M. Rettenmayr, P. Lambracht, B. Kempf, M. Graff, Adv. Eng. Mater. 7(10), 965–969 (2005)

    Article  CAS  Google Scholar 

  16. J.M. Song, H.Y. Chuang, Z.M. Wu, J. Electron. Mater. 35(5), 1041–1049 (2006)

    Article  CAS  Google Scholar 

  17. S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, G. Izuta, J. Electron. Mater. 38(12), 2668–2675 (2009)

    Article  CAS  Google Scholar 

  18. F. Çay, S.C. Kurnaz, Mater. Des. 26, 479–485 (2005)

    Article  Google Scholar 

  19. J.G. Bai, G.Q. Lu, IEEE Trans. Device Mater. Reliab. 6(3), 436–441 (2006)

    Article  CAS  Google Scholar 

  20. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385–2393 (2005)

    Article  CAS  Google Scholar 

  21. M. Knoerr, A. Schletz, in Proceedings of 6th IEEE CIPS Conference (2010), pp, 1–6

  22. H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou, J. Electron. Mater. 40(6), 1394–1402 (2011)

    Article  CAS  Google Scholar 

  23. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, IEEE Trans. Compon. Packag. Technol. 29(3), 589–593 (2006)

    Article  CAS  Google Scholar 

  24. T. Morita, E. Ide, Y. Yasuda, A. Hirose, K. Kobayashi, Jpn. J. Appl. Phys. 47(8), 6615–6622 (2008)

    Article  CAS  Google Scholar 

  25. T. Morita, Y. Yasuda, E. Ide, Y. Akada, A. Hirose, Mater. Trans. 49(12), 2875–2880 (2008)

    Article  CAS  Google Scholar 

  26. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52(2), 375–380 (2011)

    Google Scholar 

  27. S. Sakamoto, K. Suganuma, in Proceedings of 18th IEEE EMPC Conference (2011), pp. 1–5

  28. W.J. Tomlinson, J. Yates, J. Phys. Solids. 38, 1205–1206 (1977)

    Article  CAS  Google Scholar 

  29. A.M. Meier, P.R. Chidambaram, G.R. Edwards, J. Mater. Sci. 30(19), 4781–4786 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (S) Grant Number (24226017). The authors would like to thank C. Uyemura & Co., Ltd. for providing the Ag plating for the Cu plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, S., Sugahara, T. & Suganuma, K. Microstructural stability of Ag sinter joining in thermal cycling. J Mater Sci: Mater Electron 24, 1332–1340 (2013). https://doi.org/10.1007/s10854-012-0929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0929-9

Keywords

Navigation