Skip to main content
Log in

Influence of graphite oxide drying temperature on ultra-fast microwave synthesis of graphene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultra-fast synthesis of graphene has been reported by microwave assisted graphene oxide reduction. In this article, the graphene oxide was initially dried above room temperature. The initial heat treatment of graphene oxide demonstrates a distinct improvement of exfoliation rate of graphene sheets. This method provides an efficient way for mass production of high quality graphene sheets. Raman spectroscopy, scanning electron microscopy, and X-ray diffraction techniques has been used to characterize reduced graphene sheets. The quality of reduced graphene was found to be affected by the initial drying temperature of graphite oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.P. Kumah, S. Shusterman, Y. Paltiel, Y. Yacoby, R. Clarke, Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nat. Nanotechnol. 4, 835–838 (2009)

    Article  CAS  Google Scholar 

  2. J. Wu, D. Shao, V.G. Dorogan, A.Z. Li, S. Li, E.A. Decuir et al., Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. Nano Lett. 10, 1512–1516 (2010)

    Article  CAS  Google Scholar 

  3. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001)

    Article  CAS  Google Scholar 

  4. X. Zhou, S. Sanwlani, W. Liu, J.H. Lee, Z.M. Wang, G. Salamo et al., Spectroscopic signatures of many-body interactions and delocalized states in self-assembled lateral quantum dot molecules. Phys. Rev. B 84, 205411 (2011)

    Article  Google Scholar 

  5. J.H. Lee, Z.M. Wang, W.T. Black, V.P. Kunets, Y.I. Mazur, G.J. Salamo, Spatially localized formation of inas quantum dots on shallow patterns regardless of crystallographic directions. Adv. Funct. Mater. 17, 3187–3193 (2007)

    Article  CAS  Google Scholar 

  6. J.H. Lee, Z.M. Wang, N.W. Strom, Y.I. Mazur, G.J. Salamo, InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl. Phys. Lett. 89, 202101 (2006)

    Article  Google Scholar 

  7. A. Fuhrer, S. Luscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider et al., Energy spectra of quantum rings. Nature 413, 822–825 (2001)

    Article  CAS  Google Scholar 

  8. J. Wu, Z.M. Wang, K. Holmes, E. Marega Jr, Z. Zhou, H. Li et al., Laterally aligned quantum rings: from one-dimensional chains to two-dimensional arrays. Appl. Phys. Lett. 100, 203117 (2012)

    Article  Google Scholar 

  9. J. Wu, Z. Li, D. Shao, M.O. Manasreh, V.P. Kunets, Z.M. Wang et al., Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy. Appl. Phys. Lett. 94, 171102 (2009)

    Article  Google Scholar 

  10. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  CAS  Google Scholar 

  11. Y.F. Zhang, Y.F. Wang, N. Chen, Y.Y. Wang, Y.Z. Zhang, Z.H. Zhou et al., Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes. Nano-Micro Lett 2, 22–25 (2010)

    CAS  Google Scholar 

  12. Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou et al., Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett 2, 277–284 (2010)

    CAS  Google Scholar 

  13. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind et al., Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

    Article  CAS  Google Scholar 

  14. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

    Article  CAS  Google Scholar 

  15. S. Bhowmick, K. Alam, SEffects of source-drain underlaps on the performance of silicon nanowire on insulator transistors. Nano-Micro Lett 2, 83–88 (2010)

    CAS  Google Scholar 

  16. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill et al., 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)

    Article  CAS  Google Scholar 

  17. B.J. Kim, H. Jang, S. Lee, B.H. Hong, J. Ahn, J.H. Cho, High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010)

    Article  CAS  Google Scholar 

  18. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. NANO 4, 839–843 (2009)

    Article  CAS  Google Scholar 

  19. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010)

    Article  CAS  Google Scholar 

  20. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)

    Article  CAS  Google Scholar 

  21. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  CAS  Google Scholar 

  22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  23. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  24. L. Kou, H. He, C. Cao, Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheeets. Nano-Micro Lett. 2, 177–183 (2010)

    CAS  Google Scholar 

  25. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  CAS  Google Scholar 

  26. K. Yin, H. Li, Y. Xia, H. Bi, J. Sun, Z. Liu et al., Thermo-dynamic and kinetic analysis of low-temperature thermal reduction of graphene oxide. Nano-Micro Lett. 3, 51–55 (2011)

    CAS  Google Scholar 

  27. A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 21, 5004–5006 (2009)

    Article  CAS  Google Scholar 

  28. Z. Li, Y. Yao, Z. Lin, K. Moon, W. Lin, C. Wong, Ultrafast, dry microwave synthesis of graphene sheets. J. Mater. Chem. 20, 4781–4783 (2010)

    Article  CAS  Google Scholar 

  29. V. Sridhar, J. Jeon, I. Oh, Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon 48, 2953–2957 (2010)

    Article  CAS  Google Scholar 

  30. N. Hu, L. Meng, R. Gao, Y. Wang, J. Chai, Z. Yang et al., A facile route for the large scale fabrication of graphene oxide papers and their mechanical enhancement by cross-linking with glutaraldehyde. Nano-Micro Lett. 3, 215–222 (2011)

    Article  CAS  Google Scholar 

  31. H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50, 3267–3273 (2012)

    Article  CAS  Google Scholar 

  32. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  33. D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22, 325601 (2011)

    Article  Google Scholar 

  34. E. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim et al., Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20, 1907–1912 (2010)

    Article  CAS  Google Scholar 

  35. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partly supported by National Natural Science Foundation of China through Grant NSFC-51272038 and NSFC-61204060, and International Center of Artificial Materials, University of Electronic Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wu, J., Zhou, Z. et al. Influence of graphite oxide drying temperature on ultra-fast microwave synthesis of graphene. J Mater Sci: Mater Electron 24, 1298–1302 (2013). https://doi.org/10.1007/s10854-012-0923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0923-2

Keywords

Navigation