Skip to main content

Advertisement

Log in

Fabrication of 6-filament MgB2 wires enhanced by high strength 91-filament Cu–Nb composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We chose high strength and high conductive Cu–Nb composite as strengthening core to improve the mechanical properties of 6-filament MgB2 wires. The Cu–Nb core become partially dispersion strengthened during the fabrications of the MgB2 wires. It has been found that this Cu–Nb composite offers good promise of increased strength while maintaining the superconducting properties of the MgB2 wire. The Young’s modulus of the best wire samples increased significantly to about 130 GPa, which is comparable to those of high strength ferromagnetic materials sheathed wires but without negative ferromagnetic effects. Those mechanical properties were enough to satisfy the low field application needs. The critical current I c also achieves 200 A (engineering critical current density, J ce above 1.30 × 104 A/cm2) at 20 K 1 T field. The 91-filament Cu–Nb composite core reinforced wires were fabricated by in situ Powder In Tube method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.K. Onnes, Commun. Phys. Lab. Univ. Leiden, 122b (1911)

  2. J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zeniranim, J. Akimitsu, Nature 410, 63 (2001)

    Article  CAS  Google Scholar 

  3. D.L. Wang, X.P. Zhang, Z.S. Gao, L. Wang, Y.W. Ma, S. Awaji, G. Nishijima, K. Watanabe, E. Mossang, Physica C 469, 23 (2009)

    Article  CAS  Google Scholar 

  4. N. Ojha, V.K. Malik, R. Singla, C. Bernhard, G.D. Varma, Supercond. Sci. Technol. 23, 045005 (2010)

    Article  Google Scholar 

  5. Y. Akyüz, A. Bicer, M. Gürü, Mater. Des. 28, 2500 (2007)

    Article  Google Scholar 

  6. K. Katagiri, R. Takaya, K. Kasaba, K. Tachikawa, Y. Yamada, S. Shimura, K. Naoki, W. Kazuo, Supercond. Sci. Technol. 18, S351 (2005)

    Article  CAS  Google Scholar 

  7. P. Kováč, I. Hušek, E. Dobročka, T. Melišek, W. Haessler, M. Herrmann, Supercond. Sci. Technol. 21, 015004 (2008)

    Article  Google Scholar 

  8. V.I. Pantsyrnyi, IEEE Trans. Appl. Supercond. 12, 1189 (2002)

    Article  Google Scholar 

  9. Y.Y. Sun, Q.Y. Wang, F. Yang, X.M. Xiong, M. Qi, M. Liang, G. Yan, A. Sulpice, P.X. Zhang, Physica C 477, 56 (2012)

    Article  CAS  Google Scholar 

  10. M. Liang, Y.F. Lu, Z.L. Chen, C.S. Li, G. Yan, C.G. Li, P.X. Zhang, IEEE Trans. Appl. Supercond. 20, 1615 (2010)

    Google Scholar 

  11. L. Thill, F. Lecouturier, J. Stebut, Acta Mater. 50, 5049 (2002)

    Article  Google Scholar 

  12. Z.K. Liu, D.G. Schlom, Q. Li, X.X. Xi, Appl. Phys. Lett. 78, 3678 (2001)

    Article  CAS  Google Scholar 

  13. Y.Y. Sun, P.X. Zhang, Q.Y. Wang, M. Qi, F. Yang, G.F. Jiao, G.Q. Liu, A. Sulpice, G. Yan, J. Supercond. Nov. Magn. doi:10.1007/s10948-011-1395-y

  14. K. Yamamoto, K. Osamura, S. Balamurugan, T. Nakamura, T. Hoshino, I. Muta, Supercond. Sci. Technol. 16, 1052 (2003)

    Article  CAS  Google Scholar 

  15. I. Hušek, P. Kováč, H. Jones, Supercond. Sci. Technol. 17, 1411 (2004)

    Article  Google Scholar 

  16. M. Hanna, H. Fang, Y.X. Zhou, M. Alessandrini, P.T. Putman, K. Salama, J. Mater. Process. Technol. 181, 44 (2007)

    Article  CAS  Google Scholar 

  17. H. Kitaguchi, H. Kumakura, Supercond. Sci. Technol. 18, S284 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Basic Research Program (No. 2011CBA00104) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y.Y., Zhang, P.X., Sulpice, A. et al. Fabrication of 6-filament MgB2 wires enhanced by high strength 91-filament Cu–Nb composite. J Mater Sci: Mater Electron 24, 1250–1255 (2013). https://doi.org/10.1007/s10854-012-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0915-2

Keywords

Navigation