Skip to main content
Log in

Correlation of intermetallic compound growth behavior and melt state of Sn–3.5Ag–3.5Bi/Cu joint during soldering and isothermal aging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The intermetallic compound (IMC) growth behavior of Sn–3.5Ag–3.5Bi/Cu joint was investigated with a change in the solder melt structure during soldering and 180 °C isothermal aging. The results show that when the solders undergo liqiud–liquid structure transition (LLST), the IMC of the joint is thinner and more evenly distributed during soldering. The interface IMC is also thinner, and the quantity of Ag3Sn as well as Cu6Sn5 in the solder is relatively lower. However, the IMCs are more bulky after long-time aging at 180 °C. When the solders do not undergo LLST, microcracks form in the solder. Kirkendall voids are more abundant and interconnected after long, high-temperature aging. This finding indicates better joint reliability after than before LLST. The growth rate constants of the interface IMC for the two kinds of joints are calculated to be 1.94 × 10−12 and 9.71 × 10−13. The correlation of IMC growth behavior and melt state is analyzed from the viewpoints of LLST and atom diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Kang, A. Sarkhel, Lead (Pb)-free solders for electronic packaging. J. Electron. Mater. 23, 701–707 (1994)

    Article  CAS  Google Scholar 

  2. P.T. Vianco, D.R. Frear, Issues in the replacement of lead-bearing solders. JOM 45, 14–19 (1993)

    Article  CAS  Google Scholar 

  3. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. 27, 95–141 (2000)

    Article  Google Scholar 

  4. K.J. Puttlitz, G.T. Galyon, Impact of the ROHS directive on high-performance electronic systems Part II: key reliability issues preventing the implementation of lead-free solders. J. Mater. Sci. Mater. Electr. 18(1–3), 347–365 (2007)

    CAS  Google Scholar 

  5. I.E. Anderson, Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications. J. Mater. Sci. Mater. Electr. 18(1–3), 55–76 (2007)

    CAS  Google Scholar 

  6. C.W. Hwang, K. Suganuma, Joint reliability and high temperature stability of Sn–Ag–Bi lead-free solder with Cu and Sn–Pb/Ni/Cu substrates. Mater. Sci. Eng., A 373, 187–194 (2004)

    Article  Google Scholar 

  7. K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng., R 38, 55–105 (2002)

    Article  Google Scholar 

  8. K. Suganuma, Advances in lead-free electronics soldering. Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2001)

    Article  CAS  Google Scholar 

  9. C.W. Hwang, J.G. Lee, K. Suganuma, H. Mori, Interfacial microstructure between Sn–3Ag–xBi alloy and Cu substrate with or without electrolytic Ni plating. J. Electron. Mater. 32, 52–62 (2003)

    Article  CAS  Google Scholar 

  10. M.L. Huang, C.M.L. Wu, J.K.L. Lai, Y.C. Chan, Microstructural evolution of a lead-free solder alloy Sn–Bi–Ag–Cu prepared by mechanical alloying during thermal shock and aging. J. Electron. Mater. 29, 1021–1026 (2000)

    Article  CAS  Google Scholar 

  11. C.P. Wu, J. Shen, C.F. Peng, Effects of trace amounts of rare earth additions on the microstructures and interfacial reactions of Sn57Bi1Ag/Cu solder joints. J. Mater. Sci. Mater. Electron. 23, 14–21 (2012)

    Article  CAS  Google Scholar 

  12. P. McMillan, Phase transitions: jumping between liquid states. Nature 403, 151–154 (2000)

    Article  CAS  Google Scholar 

  13. J.N. Glosli, F.H. Ree, Liquid–liquid phase transformation in carbon. Phys. Rev. Lett. 82, 4659–4662 (1999)

    Article  CAS  Google Scholar 

  14. Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, K. Funakoshi, A first-order liquid–liquid phase transition in phosphorus. Nature 403, 170–173 (2000)

    Article  CAS  Google Scholar 

  15. J. Chen, F.Q. Zu, X.F. Li, G.H. Ding, H.S. Chen, L. Zou, Influence of a liquid structural change on the solidification of the alloy CuSn30. Met. Mate. Int. 14, 569–574 (2008)

    Article  CAS  Google Scholar 

  16. X.F. Li, F.Q. Zu, H.F. Ding, J. Yu, L.J. Liu, Anomalous change of electrical resistivity with temperature in liquid Pb–Sn alloys. Phys. B 358, 126–131 (2005)

    Article  CAS  Google Scholar 

  17. F.Q. Zu, J. Chen, X.F. Li, L.N. Mao, Y.C. Liu, A new viewpoint to the mechanism for the effects of melt overheating on solidification of Pb–Bi alloys. J. Mater. Res. 24, 2378–2384 (2009)

    Article  CAS  Google Scholar 

  18. X.F. Li, H.S. Chen, F.Q. Zu, Z.H. Chen, Q.Q. Sun, L.L. Guo, Kinetics of liquid structure transition of Sn- (40 wt%)Bi Melt. Chin. Phys. Lett. 25, 317–320 (2008)

    Article  Google Scholar 

  19. F.Q. Zu, Z.G. Zhu, L.J. Guo, X.B. Qin, H. Yang, W.J. Shan, Observation of an anomalous discontinuous liquid-structure change with temperature. Phys. Rev. Lett. 89, 125505 (2002)

    Article  Google Scholar 

  20. W.M. Wang, X.F. Bian, J.Y. Qin, S.I. Syliusarenko, The atomic-structure changes in Al-16 pct Si alloy above the liquidus. Met. Mater. Trans. A 31, 2163–2168 (2000)

    Article  Google Scholar 

  21. Q.D. Qin, Y.G. Zhao, Y.H. Liang, W. Zhou, Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite. J. Alloys Comp. 399, 106–109 (2005)

    Article  CAS  Google Scholar 

  22. C.L. Xu, Q.C. Jiang, Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate. Mater. Sci. Eng., A 437, 451–455 (2006)

    Article  Google Scholar 

  23. X.Y. Li, F.Q. Zu, W.L. Gao, X. Cui, L.F. Wang, G.H. Ding, Effects of the melt state on the microstructure of a Sn–3.5 %Ag solder at different cooling rates. Appl. Surf. Sci. 258, 5677–5682 (2012)

    Article  CAS  Google Scholar 

  24. X.Y. Li, F.Q. Zu, Z.Y. Huang, X. Cui , Z.Z. Wang, Electrical resistivity of Sn–3.5Ag–xBi solder melts, Phase Transitions, doi:10.1080/01411594.2011.618755

  25. X.Y. Li, F.Q. Zu, W. Wu, X.F. Zhang, D.S. Feng Liquid-liquid structure transition in Sn-3.5Ag–3.5Bi melts, Phase Transitions, doi:10.1080/01411594.2012.671321

  26. J. Chen, F.Q. Zu, Y. Xi, X.F. Li, Effects of different types of liquid structure transition on solidification of CuSn80 Alloy. T. Nonferr. Metal. Soc. 17-S1, 71–75 (2007). in Chinese

    Google Scholar 

  27. C.W. Hwang, J.G. Lee, K. Suganuma, H. Mori, Interfacial microstructure between Sn–3Ag–xBi alloy and Cu substrate with or without electrolytic Ni plating. J. Electron. Mater. 32, 52–62 (2003)

    Article  CAS  Google Scholar 

  28. W. Yang, R.W. Messler, Microstructure evolution of eutectic Sn–Ag solder joints. J. Electron. Mater. 23, 765–772 (1994)

    Article  CAS  Google Scholar 

  29. C.K. Alex, Y.C. Chan, Aging studies of Cu–Sn intermetallic compounds in annealed surface mount solder joints. Elect. Comp. Technol. Conf. 5, 1164–1171 (1996)

    Google Scholar 

  30. W.J. Tomlinson, H.G. Rhodes, Kinetics of intermetallic compound growth between nickel, electroless, Ni–P, electroless Ni–B and tin at 453 to 493 K. J. Mater. Sci. 22, 1769–1772 (1987)

    Article  CAS  Google Scholar 

  31. D. Gur, M. Bamberger, Reactive isothermal solidification in the Ni–Sn system. Acta Mater. 46, 4917–4923 (1998)

    Article  CAS  Google Scholar 

  32. C.Y. Lee, K.L. Lin, The interaction kinetics and compound formation between electroless Ni–P and solder. Thin Solid Films 249, 201–206 (1994)

    Article  CAS  Google Scholar 

  33. J.W. Yoon, C.B. Lee, S.B. Jung, Growth of an intermetallic compound layer with Sn–3.5Ag–5Bi on Cu and Ni–P/Cu during Aging Treatment. J. Electron. Mater. 32, 1195–1202 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 50571033), and by the Natural Science Foundation of Anhui Province (No. 070414178), and HFUT Research and Development Funds (No. 2009HGXJ0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangqiu Zu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zu, F., Huang, Z. et al. Correlation of intermetallic compound growth behavior and melt state of Sn–3.5Ag–3.5Bi/Cu joint during soldering and isothermal aging. J Mater Sci: Mater Electron 24, 1231–1237 (2013). https://doi.org/10.1007/s10854-012-0912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0912-5

Keywords

Navigation