Skip to main content

Amino acid 2-aminopropanoic CH3CH(NH2)COOH crystals: materials for photo- and acoustoinduced optoelectronic applications


Photo-induced treatment of l-alanine single crystals grown by slow evaporation method at an ambient temperature was performed using a 25 ps Nd:YAG pulsed laser in the presence of an external acoustic filed. The changes of the absorption were studied for the wavelength 265 nm near the energy band gap edge at acoustical power density varying within 4–6 W/cm2. The observed absorption changes indicate that the external optical electric field strengths and acoustical power densities may be efficient parameters for the characterization of photo-optical and acousto-optical treatment of the samples. From the X-ray diffraction data we have optimized the atomic positions assuming that force on the atoms is around 1 mRy/au. These are used to calculate the electronic structure and the chemical bonding for the amino acid l-alanine single crystals. The calculated electronic band structure and densities of states confirms the experimental results that this compound possesses a relatively large energy band gap. The upper valence band has its maximum at the Z point of the Brillouin zone while the conduction band minimum is located at Γ point in the zone center, resulting in an indirect energy band gap. The electronic energy gap is equal to 4.19 eV within a framework of the used local density approximation and 4.54 eV with the Engel–Vosko generalized gradient approximation as the exchange correlation potential. This is in an agreement with our experimentally measured energy band gap ~4.67 eV. The existence of O-p character in the upper valence band has a significant consequence for the optical band gap. From our calculated electron charge density distribution, we obtain a space electron charge density distribution in the average unit cell of the crystal. The chemical bonding features of l-alanine amino acid were analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. K. Yamada, A. Sato, T. Shimizu, T. Yamazakib, S. Yokoyama, Acta Cryst. E64, 0806 (2008)

    Google Scholar 

  2. Z. Tylczyński, A. Sterczyńska, M. Wiesner, J. Phys. Condens. Matter 23, 355901 (2011)

    Article  Google Scholar 

  3. A.H. Reshak, S. Auluck, D. Stys, I.V. Kityk, H. Kamarudin, J. Berdowski, Z. Tylczynski, J. Mater. Chem. 21, 17219 (2011)

    Article  CAS  Google Scholar 

  4. J. F. Nicoud, R. J. Twieg, in Design and Synthesis of Organic Molecular Compounds for Efficient Second Harmonic Generation, ed. by D.S. Chemla, J. Zyss. Nonlinear Optical Properties of Organic Molecules and Crystals, vol 1 (Academic, Orlando, 1986)

  5. M.J. Rennie (ed.), Physical Exertion, Amino Acid and Protein Metabolism, and Protein Requirements. Protein and Amino Acids (National Academy Press, Washington DC, 1999), pp. 243–253


  7. H.J. Simpson, R.E. Marsh, Acta Cryst. 20, 550 (1966)

    Article  CAS  Google Scholar 

  8. R. F. Doolittle, in Redundancies in Protein Sequences, ed. by G.D. Fasman. Prediction of Protein Structures and the Principles of Protein Conformation (Plenum, New York, 1989), pp. 599–623

  9. H.A. Levy, R.B. Corey, J. Am. Chem. Soc. 63, 2095 (1941)

    Article  CAS  Google Scholar 

  10. J. Donohue, J. Am. Chem. Soc. 72, 949 (1950)

    Article  CAS  Google Scholar 

  11. J.D. Bernal, Z. Kristallogr. 78, 363 (1931)

    CAS  Google Scholar 

  12. L. Misoguti, A.R. Varela, F.D. Nunes, V.S. Bagnato, F.E.A. Mela, J.M. Filho, S.C. Zilio, Opt. Mater. 6, 147 (1996)

    Article  Google Scholar 

  13. C. Razzetti, M. Ardoino, L. Zanotti, M. Zha, C. Paorici, Cryst. Res. Technol. 37, 456 (2002)

    Article  CAS  Google Scholar 

  14. V. Bisder-Leib, M.F. Doherty, Cryst. Growth Des. 3, 221 (2003)

    Article  Google Scholar 

  15. N. Vijayan, S. Rajasekaran, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, M. Palanichamy, P. Ramasamy, Cryst. Growth Des. 6, 2441 (2006)

    Article  CAS  Google Scholar 

  16. T. Raghavalu, G.R. Kumar, S.G. Raj, V. Mathivanan, R. Mohan, J. Cryst. Growth 307, 112 (2007)

    Article  CAS  Google Scholar 

  17. A. Wojciechowski, K. Ozga, A.H. Reshak, R. Miedzinski, I.V. Kityk, J. Berdowski, Z. Tylczyński, Mater. Lett. 64, 1957 (2010)

    Article  CAS  Google Scholar 

  18. D.D. Koelling, B.N. Harmon, J. Phys. C: Sol. State Phys. 10, 3107 (1977)

    Article  CAS  Google Scholar 

  19. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, “an Augmented Plane Wave+Local orbitals program for calculating crystal properties”, Karlheinz Schwarz (Techn. Universitat, Wien, Austria, 2001). ISBN 3-9501031-1-2

    Google Scholar 

  20. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  Google Scholar 

  21. D.M. Ceperley, B.I. Ader, Phys. Rev. Lett. 45, 566 (1980)

    Article  CAS  Google Scholar 

  22. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)

    Article  CAS  Google Scholar 

  23. P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)

    Article  CAS  Google Scholar 


  25. A.H. Reshak, D. Stys, S. Auluck, H. Kamarudin, Mater. Chem. Phys. 130, 458 (2011)

    Article  CAS  Google Scholar 

  26. A.H. Reshak, D. Stys, S. Auluck, I.V. Kityk, J. Phys. Chem. B 114, 1815 (2010)

    Article  CAS  Google Scholar 

  27. I. Fuks-Janczarek, I.V. Kityk, R. Miedzinski, E. Gondek, J. Ebothe, I. Nzoghe-Mendome, A. Danel, J. Mater. Sci. Mater. Electron. 18, 519 (2007)

    Article  CAS  Google Scholar 

  28. I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk, J. Mater. Sci. Mater. Electron. 19, 434 (2008)

    Article  CAS  Google Scholar 

  29. R. Miedzinski, J. Ebothe, I. Fuks-Janczarek, I.V. Kityk, A. Majchrowski, R. Weglowski, S.J. Klosowicz, J. Mater. Sci. Mater. Electron. 21, 665 (2010)

    Article  Google Scholar 

  30. E. Koścień, J. Sanetra, E. Gondek, B. Jarosz, I.V. Kityk, J. Ebothe, A.V. Kityk, Opt. Commun. 242, 401–409 (2004)

    Article  Google Scholar 

  31. K. Ozga, E. Gondek, A. Danel, K. Chachatrian, Opt. Commun. 231, 437 (2004)

    Article  CAS  Google Scholar 

Download references


This work was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, Malaysia. For the authors I.V. K, J.B., Z.T. this work was supported by the Polish Ministry of Science and Higher Education. It was done within the research grant “New semiorganic crystals in elastooptics and nonlinear optics” N 202-282-934.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. V. Kityk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reshak, A.H., Lakshminarayana, G., Kamarudin, H. et al. Amino acid 2-aminopropanoic CH3CH(NH2)COOH crystals: materials for photo- and acoustoinduced optoelectronic applications. J Mater Sci: Mater Electron 23, 1922–1931 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Local Density Approximation
  • Band Structure Calculation
  • Conduction Band Minimum
  • Average Unit Cell
  • Chemical Bonding Feature