Advertisement

Amino acid 2-aminopropanoic CH3CH(NH2)COOH crystals: materials for photo- and acoustoinduced optoelectronic applications

  • Ali Hussain Reshak
  • G. Lakshminarayana
  • H. Kamarudin
  • I. V. Kityk
  • S. Auluck
  • J. Berdowski
  • Z. Tylczynski
Article

Abstract

Photo-induced treatment of l-alanine single crystals grown by slow evaporation method at an ambient temperature was performed using a 25 ps Nd:YAG pulsed laser in the presence of an external acoustic filed. The changes of the absorption were studied for the wavelength 265 nm near the energy band gap edge at acoustical power density varying within 4–6 W/cm2. The observed absorption changes indicate that the external optical electric field strengths and acoustical power densities may be efficient parameters for the characterization of photo-optical and acousto-optical treatment of the samples. From the X-ray diffraction data we have optimized the atomic positions assuming that force on the atoms is around 1 mRy/au. These are used to calculate the electronic structure and the chemical bonding for the amino acid l-alanine single crystals. The calculated electronic band structure and densities of states confirms the experimental results that this compound possesses a relatively large energy band gap. The upper valence band has its maximum at the Z point of the Brillouin zone while the conduction band minimum is located at Γ point in the zone center, resulting in an indirect energy band gap. The electronic energy gap is equal to 4.19 eV within a framework of the used local density approximation and 4.54 eV with the Engel–Vosko generalized gradient approximation as the exchange correlation potential. This is in an agreement with our experimentally measured energy band gap ~4.67 eV. The existence of O-p character in the upper valence band has a significant consequence for the optical band gap. From our calculated electron charge density distribution, we obtain a space electron charge density distribution in the average unit cell of the crystal. The chemical bonding features of l-alanine amino acid were analyzed.

Keywords

Local Density Approximation Band Structure Calculation Conduction Band Minimum Average Unit Cell Chemical Bonding Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, Malaysia. For the authors I.V. K, J.B., Z.T. this work was supported by the Polish Ministry of Science and Higher Education. It was done within the research grant “New semiorganic crystals in elastooptics and nonlinear optics” N 202-282-934.

References

  1. 1.
    K. Yamada, A. Sato, T. Shimizu, T. Yamazakib, S. Yokoyama, Acta Cryst. E64, 0806 (2008)Google Scholar
  2. 2.
    Z. Tylczyński, A. Sterczyńska, M. Wiesner, J. Phys. Condens. Matter 23, 355901 (2011)CrossRefGoogle Scholar
  3. 3.
    A.H. Reshak, S. Auluck, D. Stys, I.V. Kityk, H. Kamarudin, J. Berdowski, Z. Tylczynski, J. Mater. Chem. 21, 17219 (2011)CrossRefGoogle Scholar
  4. 4.
    J. F. Nicoud, R. J. Twieg, in Design and Synthesis of Organic Molecular Compounds for Efficient Second Harmonic Generation, ed. by D.S. Chemla, J. Zyss. Nonlinear Optical Properties of Organic Molecules and Crystals, vol 1 (Academic, Orlando, 1986)Google Scholar
  5. 5.
    M.J. Rennie (ed.), Physical Exertion, Amino Acid and Protein Metabolism, and Protein Requirements. Protein and Amino Acids (National Academy Press, Washington DC, 1999), pp. 243–253Google Scholar
  6. 6.
  7. 7.
    H.J. Simpson, R.E. Marsh, Acta Cryst. 20, 550 (1966)CrossRefGoogle Scholar
  8. 8.
    R. F. Doolittle, in Redundancies in Protein Sequences, ed. by G.D. Fasman. Prediction of Protein Structures and the Principles of Protein Conformation (Plenum, New York, 1989), pp. 599–623Google Scholar
  9. 9.
    H.A. Levy, R.B. Corey, J. Am. Chem. Soc. 63, 2095 (1941)CrossRefGoogle Scholar
  10. 10.
    J. Donohue, J. Am. Chem. Soc. 72, 949 (1950)CrossRefGoogle Scholar
  11. 11.
    J.D. Bernal, Z. Kristallogr. 78, 363 (1931)Google Scholar
  12. 12.
    L. Misoguti, A.R. Varela, F.D. Nunes, V.S. Bagnato, F.E.A. Mela, J.M. Filho, S.C. Zilio, Opt. Mater. 6, 147 (1996)CrossRefGoogle Scholar
  13. 13.
    C. Razzetti, M. Ardoino, L. Zanotti, M. Zha, C. Paorici, Cryst. Res. Technol. 37, 456 (2002)CrossRefGoogle Scholar
  14. 14.
    V. Bisder-Leib, M.F. Doherty, Cryst. Growth Des. 3, 221 (2003)CrossRefGoogle Scholar
  15. 15.
    N. Vijayan, S. Rajasekaran, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, M. Palanichamy, P. Ramasamy, Cryst. Growth Des. 6, 2441 (2006)CrossRefGoogle Scholar
  16. 16.
    T. Raghavalu, G.R. Kumar, S.G. Raj, V. Mathivanan, R. Mohan, J. Cryst. Growth 307, 112 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Wojciechowski, K. Ozga, A.H. Reshak, R. Miedzinski, I.V. Kityk, J. Berdowski, Z. Tylczyński, Mater. Lett. 64, 1957 (2010)CrossRefGoogle Scholar
  18. 18.
    D.D. Koelling, B.N. Harmon, J. Phys. C: Sol. State Phys. 10, 3107 (1977)CrossRefGoogle Scholar
  19. 19.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, “an Augmented Plane Wave+Local orbitals program for calculating crystal properties”, Karlheinz Schwarz (Techn. Universitat, Wien, Austria, 2001). ISBN 3-9501031-1-2Google Scholar
  20. 20.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)CrossRefGoogle Scholar
  21. 21.
    D.M. Ceperley, B.I. Ader, Phys. Rev. Lett. 45, 566 (1980)CrossRefGoogle Scholar
  22. 22.
    E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)CrossRefGoogle Scholar
  23. 23.
    P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    A.H. Reshak, D. Stys, S. Auluck, H. Kamarudin, Mater. Chem. Phys. 130, 458 (2011)CrossRefGoogle Scholar
  26. 26.
    A.H. Reshak, D. Stys, S. Auluck, I.V. Kityk, J. Phys. Chem. B 114, 1815 (2010)CrossRefGoogle Scholar
  27. 27.
    I. Fuks-Janczarek, I.V. Kityk, R. Miedzinski, E. Gondek, J. Ebothe, I. Nzoghe-Mendome, A. Danel, J. Mater. Sci. Mater. Electron. 18, 519 (2007)CrossRefGoogle Scholar
  28. 28.
    I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk, J. Mater. Sci. Mater. Electron. 19, 434 (2008)CrossRefGoogle Scholar
  29. 29.
    R. Miedzinski, J. Ebothe, I. Fuks-Janczarek, I.V. Kityk, A. Majchrowski, R. Weglowski, S.J. Klosowicz, J. Mater. Sci. Mater. Electron. 21, 665 (2010)CrossRefGoogle Scholar
  30. 30.
    E. Koścień, J. Sanetra, E. Gondek, B. Jarosz, I.V. Kityk, J. Ebothe, A.V. Kityk, Opt. Commun. 242, 401–409 (2004)CrossRefGoogle Scholar
  31. 31.
    K. Ozga, E. Gondek, A. Danel, K. Chachatrian, Opt. Commun. 231, 437 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ali Hussain Reshak
    • 1
    • 2
  • G. Lakshminarayana
    • 3
  • H. Kamarudin
    • 2
  • I. V. Kityk
    • 4
  • S. Auluck
    • 5
  • J. Berdowski
    • 6
  • Z. Tylczynski
    • 7
  1. 1.School of Complex Systems, FFPWCENAKVA-University of South Bohemia in CBNove HradyCzech Republic
  2. 2.School of Material EngineeringMalaysia University of PerlisKangarMalaysia
  3. 3.Materials Science and Technology Division (MST-7)Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Electrical Engineering DepartmentTechnological University of CzestochowaCzestochowaPoland
  5. 5.National Physical Laboratory Dr. K S Krishnan MargNew DelhiIndia
  6. 6.Institute of PhysicsJ. Dlugosz UniversityCzestochowaPoland
  7. 7.Faculty of PhysicsA. Mickiewicz UniversityPoznanPoland

Personalised recommendations