Skip to main content
Log in

In situ and ex situ spectroscopic study of poly(3-hexylthiophene) electrochemically synthesized

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, poly(3-hexylthiophene) (P3HT) film was synthesized electrochemically in non-aqueous media through the oxidation of the 3-hexylthiophene monomer using a standard three-electrode cell in acetonitrile with 0.100 mol L−1 LiClO4. The polymeric thick film was deposited on platinum plates for best quality control of the process. Cyclic voltammetry of this material showed two bands of oxidation and two bands of reduction attributed to radical cation and dication segments in the polymer chain. These were characterized by reflectance and Raman spectra, of the reduced (chemically de-doped) and oxidized (electrochemically doped) films. The generated film was subjected to anodic potentials of 1.00 and 1.45 V and characterized by an in situ Raman technique, which indicated the stabilization of the radical cation segments. In addition Raman ex situ spectra of as-prepared film was obtained. The increase in the irradiation time of the sample was enough to alter the nature of the constituent species of the oxidized film, preferably favoring the aromatic chains, together with the dication segments. Photoluminescence spectra showed a larger contribution of dication than radical cation segments for the chemically de-doped sample and under this condition showed good stability, even with variation in laser power. SEM images of P3HT film with indication of the thickness and spherical shape of the sample studied were obtained. Aided by these data it was possible to verify the Stokes shift and ionization potential (I p), electron affinity (E.A.) and energy gap (E g) parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. López-Elvira, E. Escasaín, A. Baró, J. Colchero, E. Palacios-Lidón, Polym. Degrad. Stab. 96, 1279 (2011)

    Article  Google Scholar 

  2. Q.M. Jia, J.B. Li, L.F. Wang, J.W. Zhu, M. Zheng, Mater. Sci. Eng. A. 448, 356 (2007)

    Article  Google Scholar 

  3. Y.G. Seol, J.G. Lee, N.-E. Lee, S.S. Lee, J. Ahn, Thin Solid Films 515, 5065 (2007)

    Article  CAS  Google Scholar 

  4. R. Singh, R.J. Singh, J. Kumar, R. Kant, V. Kumar, J. Polym. Sci. Part B Polym. Phys. 48, 1047 (2010)

    Article  CAS  Google Scholar 

  5. Y. Yamashita, Sci Technol. Adv. Mater. 10, 024313 (2009)

    Article  Google Scholar 

  6. M.E. Nicho, H. Hub, C. Lopez-Matab, J. Escalante, Sol. Energy Mater. Sol. Cells. 82, 105 (2004)

    Article  CAS  Google Scholar 

  7. Y. Pang, X. Li, H. Ding, G. Shi, L. Jin, Electrochim. Acta. 52, 6172 (2007)

    Article  CAS  Google Scholar 

  8. M.T. Khan, R. Bhargav, A. Kaur, S.K. Dhawan, S. Chand, Thin Solid Films 519, 1007 (2010)

    Article  CAS  Google Scholar 

  9. F. Liesa, C. Ocampo, C. Alemán, E. Armelin, R. Oliver, J. Appl. Polym. Sci. 102, 1592 (2006)

    Article  CAS  Google Scholar 

  10. M. Fall, A.A. Diagne, M.M. Dieng, F. Deflorian, S. Rossi, P.L. Bonora, C.D. Volpe, J.J. Aaron, Synth. Met. 155, 569 (2005)

    Article  CAS  Google Scholar 

  11. H.-J. Kim, D.-C. Kim, R. Kim, J. Kim, D.-H. Park, H.-S. Kim, J. Joo, Y.D. Suh, J. Appl. Phys. 101, 53514 (2007)

    Article  Google Scholar 

  12. L. Micaroni, F.C. Nart, I.A. Hummelgen, J. Solid State Electrochem. 7, 55 (2002)

    Article  CAS  Google Scholar 

  13. F.M. Nodari, R.L. Patyk, L.S. Roman, A.R.V. Benvenho, I.A. Hummelgen, E.K.C. Yoshikawa, J. Gruber, J. Mater. Sci. Mater. Electron. 21, 1235 (2010)

    Article  CAS  Google Scholar 

  14. G. Louarn, J.Y. Mevellec, J.P. Buisson, S. Lefrant, J. Chim. Phys. 89, 987 (1992)

    CAS  Google Scholar 

  15. C.C. Ho, Y.C. Liu, S.H. Lin, W.F. Su, Macromolecules 45, 813 (2012)

    Article  CAS  Google Scholar 

  16. R.A. Kruger, T.J. Gordon, T. Baumgartner, T.C. Sutherland, ACS Appl. Mater. Interfaces 3, 2031 (2011)

    Article  CAS  Google Scholar 

  17. G.A. dos Reis, I.F.L. Dias, H. de Santana, J.L. Duarte, E. Laureto, E. di Mauro, M.A.T. da Silva, Synth. Met. 161, 340 (2011)

    Article  Google Scholar 

  18. D. Izuhura, T.M. Swager, Macromolecules 44, 2678 (2011)

    Article  Google Scholar 

  19. X. Feng, X. Wang, Thin Solid Films 519, 5700 (2011)

    Article  CAS  Google Scholar 

  20. H. Koizumi, H. Dougauchi, T. Ichikawa, J. Phys. Chem. B. 109, 15288 (2005)

    Article  CAS  Google Scholar 

  21. S. Lefrant, I. Baltog, M.L. de la Chapelle, M. Baibarac, G. Louarn, C. Journet, P. Bernier, Synth. Met. 100, 13 (1999)

    Article  CAS  Google Scholar 

  22. M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Baltog, J. Raman Spectrosc. 29, 825 (1998)

    Article  CAS  Google Scholar 

  23. H. de Santana, M.L.A. Temperini, J.C. Rubim, J. Electroanal Chem. 356, 145 (1993)

    Article  Google Scholar 

  24. E.M. Therézio, J.L. Duarte, E. Laureto, E. Di Mauro, I.L. Dias, A. Marletta, H. de Santana, J. Phys. Org. Chem. 24, 640 (2011)

    Article  Google Scholar 

  25. K. Yamamoto, S. Ochiai, X. Wang, Y. Uchida, K. Konjima, A. Ohashe, T. Mitzutani, Thin Solid Films 516, 2695 (2008)

    Article  CAS  Google Scholar 

  26. Z. Peng, M.E. Galvin, Chem. Mater. 10, 1785 (1998)

    Article  CAS  Google Scholar 

  27. M. Lapkowski, J. Zak, M. Kolodziej-Sadlok, S. Guillerez, G. Bidan, Synth. Met. 119, 417 (2001)

    Article  CAS  Google Scholar 

  28. S. Hotta, S.D.D.V. Rughooputh, A.J. Heeger, F. Wudl, Macromolecules 20, 212 (1987)

    Article  CAS  Google Scholar 

  29. B. Thémans, W.R. Salaneck, J.L. Brédas, Synth. Met. 28, 359 (1989)

    Article  Google Scholar 

  30. P. Bolond, S.S. Sunkavalli, S. Chennuri, K. Foe, T.A. Fattah, G. Namkoong, Thin Solid Films 518, 1728 (2010)

    Article  Google Scholar 

  31. K. Sugiyama, T. Kojima, H. Fukuda, H. Yashiro, T. Matsuura, Y. Shimoyama, Thin Solid Films 516, 2691 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Araucaria Foundation (processes no. 18.575 and 20.380) and CNPq (processes no. 470533/2009-9 and 301980/2011-0), and Danielly and Elaine are indebted to CAPES for the fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique de Santana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes, T.N.M., Bento, D.C., Maia, E.C.R. et al. In situ and ex situ spectroscopic study of poly(3-hexylthiophene) electrochemically synthesized. J Mater Sci: Mater Electron 23, 1916–1921 (2012). https://doi.org/10.1007/s10854-012-0880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0880-9

Keywords

Navigation