Vertical organic field effect transistor using sulfonated polyaniline/aluminum bilayer as intermediate electrode

  • Keli F. Seidel
  • Lucieli Rossi
  • Regina M. Q. Mello
  • Ivo A. HümmelgenEmail author


We report a vertical organic field effect transistor using a bilayer formed by sulfonated polyaniline (SPAN) film and a thin Aluminum layer as the intermediate electrode. The device uses p-Si as gate, SiO2 as gate insulator, SPAN/Al bilayer as drain, C60 fullerene as channel and Ag as the source (top electrode). This device works at low voltages driving high current densities for organic field effect transistors, between source and drain, of the order of microamperes, with the additional advantage that the modulation occurs at both negative and positive gate voltages.


Gate Insulator Organic Field Effect Transistor Negative Gate Voltage Intermediate Electrode Positive Gate Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank CNPq and Capes for research grants.


  1. 1.
    C.A. Di, G. Yu, Y. Liu, D. Zhu, J. Phys. Chem. B 111, 14083 (2007)CrossRefGoogle Scholar
  2. 2.
    L. Ma, Y. Yang, Appl. Phys. Lett. 85, 5084 (2004)CrossRefGoogle Scholar
  3. 3.
    S.H. Li, Z. Xu, L. Ma, C.W. Chu, Y. Yang, Appl. Phys. Lett. 91, 083507 (2007)CrossRefGoogle Scholar
  4. 4.
    Z. Xu, S.H. Li, L. Ma, G. Li, Y. Yang, Appl. Phys. Lett. 91, 092911 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, Appl. Phys. Lett. 89, 103525 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Liu, M.A. McCarthy, Y. Yoon, D.Y. Kim, Z. Wu, F. So, P.H. Holloway, J.R. Reynilds, J. Guo, A.G. Rinzler, Adv. Mater. 20, 3605 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Rossi, K.F. Seidel, W.S. Machado, I.A. Hümmelgen, J. Appl. Phys. 110, 94508 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Watanabe, H. Iechi, K. Kudo, Thin Solid Films 516, 2731 (2008)CrossRefGoogle Scholar
  9. 9.
    S.S. Cheng, Y.C. Chuang, D. Kekuda, C.W. Ou, M.C. Wu, C.W. Chu, Adv. Mater. 21, 1860 (2009)CrossRefGoogle Scholar
  10. 10.
    A.J. Bem-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Appl. Phys. Lett. 95, 213301 (2009)CrossRefGoogle Scholar
  11. 11.
    K.I. Nakayama, S.Y. Fujimoto, M. Yokoyama, Org. Electron. 10, 543 (2009)CrossRefGoogle Scholar
  12. 12.
    A.J. Ben-Sasson, N. Tessler, J. Appl. Phys. 110, 044501 (2011)CrossRefGoogle Scholar
  13. 13.
    T. B. Massalski (editor-in-Chief), H. Okamoto, P. R. Subramanian, L. Kacprzark (eds.), Binary Alloy Phase Diagrams, Materials Park, Vol. 2, Ohio, ASM International (1990), p. 1811Google Scholar
  14. 14.
    C.H. Yang, L.R. Huang, Y.K. Chih, W.C. Lin, F.J. Liu, T.L. Wang, Polymer 48, 3237 (2007)CrossRefGoogle Scholar
  15. 15.
    W.J. da Silva, I.A. Hümmelgen, R.M.Q. Mello, J. Mater. Sci.: Mater. Electron. 20, 123 (2009)CrossRefGoogle Scholar
  16. 16.
    W.J. Silva, I.A. Hümmelgen, R.M.Q. Mello, D. Ma, Appl. Phys. Lett. 93, 053301 (2008)CrossRefGoogle Scholar
  17. 17.
    S.M. Sze, Physics of semiconductor devices (Wiley, New York, 1981)Google Scholar
  18. 18.
    A.N. Aleshin, I.P. Shcherbakov, V.N. Petrov, A.N. Titkov, Org. Electron. 12, 1285 (2011)CrossRefGoogle Scholar
  19. 19.
    D.G. Ma, I.A. Hümmelgen, B. Hu, F.E. Karasz, J. Phys. D Appl. Phys. 32, 2568 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Keli F. Seidel
    • 1
  • Lucieli Rossi
    • 1
  • Regina M. Q. Mello
    • 2
  • Ivo A. Hümmelgen
    • 1
    Email author
  1. 1.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations