Skip to main content
Log in

Mechanism for the formation of low aspect ratio of La(OH)3 nanorods in aqueous solution: thermal and frequency dependent behaviour

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La(OH)3 nanorods of length varying between 30 and 50 nm with aspect ratio of 2–5 were synthesized in aqueous solution using hydrazine hydrate in presence of mixture of cationic N-cetyl-N,N,N,trimethylammonium bromide (CTAB) and tetra-n-butylammonium bromide (TBAB) surfactants. The resultant product was characterized for its morphology and structure using XRD, TEM and FT-IR. Thermal stability studied using TGA indicated good stability. Surfactants in reaction mixture reduces the surface tension of the solution which lowers the energy needed to form a new phase, resulting in the formation of La(OH)3 crystals of anisotropic shape with low aspect ratio. The A.C. conductivity was found to be of the order of nano-seimen (ns), which non-linearly increases with the increase in frequency (102–106 Hz) The capacitance behaviour was observed in pF in mid frequency region, which can be useful as low loss dielectric material. Nano rods may work as standard materials to monitor conductivity levels in biofluid proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.X. Yang, Y. Liang, H. Chen, Y.M. Meng, W. Jiang, Mater. Res. Bull. 44, 1753 (2009)

    Article  CAS  Google Scholar 

  2. L. Qiting, N. Jiansen, W. Yiqing, D. Yanan, D. Weizhong, G. Shuhua, J. Rare Earths 29, 416 (2011)

    Article  Google Scholar 

  3. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Article  CAS  Google Scholar 

  4. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  CAS  Google Scholar 

  5. M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.G. Yoon, M.S.C. Mazzoni, H.J. Choi, Science 288, 494 (2000)

    Article  CAS  Google Scholar 

  6. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  CAS  Google Scholar 

  7. X. Wang, Y. Li, Angew. Chem. Int. Ed. 41, 4790 (2002)

    Article  CAS  Google Scholar 

  8. Y.D. Li, Y. Huang, T. Bai, L.Q. Li, Inorg. Chem. 39, 3418 (2000)

    Article  CAS  Google Scholar 

  9. X. Ma, H. Zhang, Y. Ji, J. Xu, D. Yang, Mater. Lett. 58, 1180 (2004)

    Article  CAS  Google Scholar 

  10. H. Zhang, X. Ma, Y. Ji, J. Xu, D. Yang, Chem. Phys. Lett. 377, 654 (2003)

    Article  CAS  Google Scholar 

  11. H. Zhang, Y. Ji, X. Ma, J. Xu, D. Yang, Nanotechnology 14, 974 (2003)

    Article  CAS  Google Scholar 

  12. I. Djerdj, G. Garnweitner, D.S. Su, M. Niederberger, J. Solid State Chem. 180, 2145 (2007)

    Article  Google Scholar 

  13. M. Mazloumi, S. Zanganeh, A. Kajbafvala, M.R. Shayegh, D.S.K. Sadrnezhaad, IJE Trans. B: Appl. 21, 169 (2008)

    Google Scholar 

  14. Q. Mu, T. Chen, Y. Wang, Nanotechnology 20, 345602 (2009)

    Article  Google Scholar 

  15. G. Li, C. Li, Z. Xu, Z. Cheng, J. Lin, Cryst. Eng. Comm. 12, 4208 (2010)

    CAS  Google Scholar 

  16. F. Bouyer, N. Sanson, M. Destarac, C. Geradin, New J. Chem. 30, 399 (2006)

    Article  CAS  Google Scholar 

  17. M.L. Singla, A. Negi, V. Mahajan, K.C. Singh, D.V.S. Jain, Appl. Catal. A-Gen. 323, 51 (2007)

    Article  CAS  Google Scholar 

  18. L. Wang, X. Wu, M. Pei, Z. Wu, X. Li, X. Tao, Chinese J. Chem. 29, 185 (2011)

    Article  Google Scholar 

  19. P.S. Kohli, P. Devi, P. Reddy, K.K. Raina, M.L. Singla, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0680-2

    Google Scholar 

  20. S.K. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, M. Gradzielski, Nanoscale Res. Lett. 4, 17 (2009)

    Article  CAS  Google Scholar 

  21. Y. Borodko, L. Jones, H. Lee, H. Frei, G. Somorjai, Langmuir 25, 6665 (2009)

    Article  CAS  Google Scholar 

  22. A. Neumann, D. Walter, Thermochim. Acta 445, 200 (2006)

    Article  CAS  Google Scholar 

  23. E. Fuglein, D. Walter, Z. Anorg, Allg. Chem. 632, 2154 (2006)

    Google Scholar 

  24. Y. Son, B. Mayers, Y. Xia, Nano Lett. 3, 675 (2003)

    Article  Google Scholar 

  25. F. Kim, K. Sohn, W. Huang, J. Am. Chem. Soc. 130, 1442 (2008)

    Google Scholar 

  26. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78, 99 (2002)

    Article  CAS  Google Scholar 

  27. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Crys, Growth 203, 186 (1999)

    Article  CAS  Google Scholar 

  28. L. Yan, Y.D. Li, Z.X. Deng, J. Zhuang, X. Sun, Int. J. Inorg. Mater. 3, 633 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Dr. Pawan Kapur, Director, Central Scientific Instruments Organization (CSIO), Chandigarh for permitted us to carry out research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Singla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohli, P.S., Kumar, M., Raina, K.K. et al. Mechanism for the formation of low aspect ratio of La(OH)3 nanorods in aqueous solution: thermal and frequency dependent behaviour. J Mater Sci: Mater Electron 23, 2257–2263 (2012). https://doi.org/10.1007/s10854-012-0793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0793-7

Keywords

Navigation