Paper-based nanosilver conductive ink

  • Wendong Yang
  • Chunyan Liu
  • Zhiying Zhang
  • Yun Liu
  • Shidong Nie
Article

Abstract

Monolayer-protected silver nanoparticles sized 5 nm were directly synthesized in relatively high concentration (0.093 M) in water phase using cheap chemicals. The ink (20 % silver) prepared with the silver nanoparticles was written on sulfuric paper by a facile pen-on-paper paradigm. The effect factors on the formation and conductive mechanism of the nanosilver films from the silver ink were studied, including the microstructure, size evolution and interaction of particles and so on. Results show that the silver nanoink allows for a low sintering temperature and with a relatively high conductivity. The grown particle, increased inter-particle contact area and off dodecanoic acid layer were the three dominating factors responded to the conductivity of the nanosilver films.

References

  1. 1.
    Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gate, M. McCreary, Nature 423, 136 (2003)CrossRefGoogle Scholar
  2. 2.
    C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, Adv. Mater. 19, 3973 (2007)CrossRefGoogle Scholar
  3. 3.
    T. Okimoto, K. Takenobu, Y. Yanagi, H. Miyata, H. Shimotani, Y. Kataura, Iwasa, Adv. Mat 22, 3981 (2010)CrossRefGoogle Scholar
  4. 4.
    V. Subramanian, J.M.J. Frechet, P.C. Chang, D. Huang, J.B. Lee, S.E. Molesa, A.R. Murphy, D.R. Redinger, S.K. Volkman, Proc. IEEE 93, 1330 (2005)CrossRefGoogle Scholar
  5. 5.
    L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, PNAS 106, 21490 (2009)CrossRefGoogle Scholar
  6. 6.
    S.H. Lim, J.W. Kemling, L. Feng, K.S. Suslick, Analyst 134, 2453 (2009)CrossRefGoogle Scholar
  7. 7.
    C.T. Wang, K.Y. Huang, D.T.W. Lin, Y.C. Hu, Sensors 10, 5054 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)CrossRefGoogle Scholar
  9. 9.
    D. Kim, J. Moon, Solid State Lett. 8, J30 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Li, Y. Wu, B.S. Ong, J. Am. Chem. Soc. 127, 3266 (2005)CrossRefGoogle Scholar
  11. 11.
    P.A. Hu, K. Li, W.L. Chen, P. Li, D.P. Chu, W. O′Neil, J. Micromech. Microeng. 20, 075032 (2010)CrossRefGoogle Scholar
  12. 12.
    K.J. Lee, B.H. Jun, T.H. Kim, J. Joung, Nanotechnology 17, 2424 (2006)CrossRefGoogle Scholar
  13. 13.
    I.K. Shim, Y.I. Lee, K.J. Lee, J. Joung, Mater. Chem. Phys. 110, 316 (2008)CrossRefGoogle Scholar
  14. 14.
    K.J. Lee, B.H. Jun, J. Choi, Y.i Lee, J. Joung, Y.S. Oh, Nanotechnology 18, 335601 (2007)CrossRefGoogle Scholar
  15. 15.
    W.W. Yin, D.H. Lee, J. Choi, C. Park, S.M. Cho, Korean J. Chem. Eng. 25, 1358 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Jeong, H.C. Song, W.W. Lee, Y. Choi, B.H. Ryu, J. Appl. Phys. 108, 102805 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Jeong, H.C. Song, W.W. Lee, Y. Choi, S.S. Lee, B.H. Ryu, J. Phys. Chem. C 114, 22277 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Shankar, L. Groven, A. Amert, K.W. Whites, J.J. Kellar, J. Mater. Chem. 21, 10871 (2011)CrossRefGoogle Scholar
  19. 19.
    B.Y. Ahn, D.J. Lorang, J.A. Lewis, Nanoscale 3, 2700 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Berggren, D. Nilsson, N.D. Robinson, Nat. Mater. 6, 3 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Sun, J.A. Rogers, Adv. Mater. 19, 1897 (2007)CrossRefGoogle Scholar
  22. 22.
    M.A.M. Leenen, V. Arning, H. Thiem, J. Steiger, R. Anselmann, Phys. Status Solidi A 206, 588 (2009)CrossRefGoogle Scholar
  23. 23.
    D.H. Kim, Y.S. Kim, J. Wu, Z. Liu, J. Song, H.S. Kim, Y.Y. Huang, K.C. Hwang, J.A. Rogers, Adv. Mater. 21, 3703 (2009)CrossRefGoogle Scholar
  24. 24.
    A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater. 20, 28 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Adv. Mater. 23, 3426 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Nano Lett. 4, 383 (2004)CrossRefGoogle Scholar
  27. 27.
    H.J. Jiang, K. Moon, F. Hua, C.P. Wong, Chem. Mater. 19, 4482 (2007)CrossRefGoogle Scholar
  28. 28.
    E. Pike, C.H. Seager, Phys. Rev. B 10, 1421 (1974)CrossRefGoogle Scholar
  29. 29.
    L.H. Fang, S. Bin, J.M. Qing, C.P. Wong, in Proceeding of 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (2004), p. 193Google Scholar
  30. 30.
    G.R. Ruschau, S. Yashikawa, R.E. Newnham, J. Appl. Phys. 72, 953 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wendong Yang
    • 1
  • Chunyan Liu
    • 1
  • Zhiying Zhang
    • 1
  • Yun Liu
    • 1
  • Shidong Nie
    • 1
  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesZhongguancun, BeijingPeople’s Republic of China

Personalised recommendations