Skip to main content
Log in

Influence of deposition temperature on the properties of sprayed CuInS2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper indium disulfide films were deposited by chemical spray pyrolysis technique at different deposition temperatures. Deposition temperature was explored to understand how it affects the crystallography, stoichiometry, morphology, optical and electrical properties of the deposited films. The chemical composition of the films evaluated by energy dispersive X-ray spectroscopy revealed the presence of copper, indium and sulfur elements in the films. Also it was observed that films formed at higher temperatures are copper rich and also showed deficiency of sulfur. X-ray diffraction patterns showed that the sprayed CuInS2 films are polycrystalline with chalcopyrite structure and preferred orientation in the (112) direction. Atomic force microscope studies revealed significant variations in the surface morphology of the prepared films with different deposition temperature. An increase in the energy band gap was observed with increasing the deposition temperatures. The temperatures dependence of conductivity of CuInS2 thin films, determined in the temperature range of 225–400 K, showed their semiconducting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Scheer, T. Walter, H.W. Shock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993)

    Article  CAS  Google Scholar 

  2. K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Bräunig, Sol. Energy Mater. Sol. Cells 67, 159 (2001)

    Article  CAS  Google Scholar 

  3. L. Shao, K. Chang, H. Hwang, Mater. Sci. Semicond. Process. 6, 397 (2003)

    Article  CAS  Google Scholar 

  4. L.L. Kazmerski, G.A. Sanborn, J. Appl. Phys. 48, 3178 (1977)

    Article  CAS  Google Scholar 

  5. M. Gossla, H. Metzner, H.E. Mahnke, Thin Solid Films 387, 77 (2001)

    Article  CAS  Google Scholar 

  6. X.P. Liu, L.X. Shao, Surf. Coat. Technol. 201, 5340 (2007)

    Article  CAS  Google Scholar 

  7. J. Qiu, Z. Jin, J. Qian, Y. Shi, W. Wu, Mater. Lett. 59, 2735 (2005)

    Article  CAS  Google Scholar 

  8. F.M. Cui, L. Wang, Z.Q. Xi, Y. Sun, D.R. Yang, J. Mater. Sci.: Mater. Electron. 20, 609 (2009)

    Article  CAS  Google Scholar 

  9. G.T. Pan, M.H. Lai, R.C. Juang, T.W. Chung, T.C.K. Yang, Sol. Energ. Mater. Sol. Cell 94, 1790 (2010)

    Article  CAS  Google Scholar 

  10. S.X. Lin, X.Z. Shi, X. Zhang, H.H. Kou, C.M. Wang, Appl. Surf. Sci. 256, 4365 (2010)

    Article  CAS  Google Scholar 

  11. L. Oliveira, T. Todorov, E. Chassaing, D. LinCot, J. Carda, P. Escribano, Thin Solid Films 517, 2272 (2009)

    Article  CAS  Google Scholar 

  12. M.C. Zouaghi, T. Ben Nasrallah, S. Marsillac, J.C. Bernède, S. Belgacem, Thin Solid Films 382, 39 (2001)

    Article  CAS  Google Scholar 

  13. E. Kärber, A. Katerski, I. Oja Acik, V. Mikli, A. Mere, M. Krunks, Thin Solid Films 519, 7180 (2011)

    Article  Google Scholar 

  14. M.H. Sayed, M. Boshta, F.A. Mahmoud, AIP Conf. Proc. 1169, 113 (2009)

    Article  CAS  Google Scholar 

  15. K.L. Chopra, S.R. Das, Thin Film Solar Cells (Plenum, New York, 1983)

    Google Scholar 

  16. R.R. Chamberlin, J.S. Skarman, J. Electrochem. Soc. 113, 86 (1966)

    Article  CAS  Google Scholar 

  17. P.S. Patil, Mater. Chem. Phys. 59, 185 (1999)

    Article  CAS  Google Scholar 

  18. M. Krunks, O. Kijatkina, H. Rebane, I. Oja, V. Mikli, A. Mere, Thin Solid Films 403–404, 71 (2002)

    Article  Google Scholar 

  19. T. Sebastian, M. Gopinath, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Sol. Energy 83, 1683 (2009)

    Article  CAS  Google Scholar 

  20. K. Das, S.K. Panda, S. Gorai, P. Mishra, S. Chaudhuri, Mater. Res. Bull. 43, 2742 (2008)

    Article  CAS  Google Scholar 

  21. J.I. Pankove, Optical processes in semiconductors (Prentice-Hall Englewood Cliffs, New Jersey, 1971)

    Google Scholar 

  22. M.R.A. Bhuiyan, S.M. Firoz Hasan, J. Phys. D Appl. Phys. 39, 4935 (2006)

    Article  CAS  Google Scholar 

  23. J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569 (1972)

    Article  Google Scholar 

  24. M. Krunks, A. Mere, A. Katerski, V. Mikli, J. Krustok, Thin Solid Films 511–512, 434 (2006)

    Article  Google Scholar 

  25. A.N. Tiwari, D.K. Pandya, K.L. Chopra, Thin Solid Films 130, 217 (1985)

    Article  CAS  Google Scholar 

  26. K.S. Ramaiah, V.S. Raja, J. Mater. Sci.: Mater. Electron. 10, 145 (1999)

    Article  CAS  Google Scholar 

  27. D.K. Schroder, Semiconductor materials, device characterization (Wiley, New York, 1998)

    Google Scholar 

  28. Y. Akaki, S. Nakamura, K. Nomoto, T. Yoshitake, K. Yoshino, Phys. Status Solidi C 6, 1030 (2009)

    Article  CAS  Google Scholar 

  29. T. Sebastian, R. Jayakrishnan, C. Sudha Kartha, K.P. Vijayakumar, Open Surf. Sci. J. 1, 1 (2009)

    Article  CAS  Google Scholar 

  30. A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayed, M.H., Mahmoud, F.A., Boshta, M. et al. Influence of deposition temperature on the properties of sprayed CuInS2 thin films. J Mater Sci: Mater Electron 23, 2042–2047 (2012). https://doi.org/10.1007/s10854-012-0700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0700-2

Keywords

Navigation