Skip to main content
Log in

Effect of substrate temperature on structural, morphological and optical properties of crystalline titanium dioxide films prepared by DC reactive magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) thin films have been deposited with various substrate temperatures by dc reactive magnetron sputtering method onto glass substrate. The effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. Chemical composition of the films was investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) analysis of the films revealed that they have polycrystalline tetragonal structure with strong (101) texture. The surface morphological study revealed the crystalline nature of the films at higher substrate temperatures. The TiO2 films show the main bands in the range 400–700 cm−1, which are attributed to Ti–O stretching and Ti–O–Ti bridging. The transmittance spectra of the TiO2 thin film measured with various substrate temperatures ranged from 75 to 90 % in the visible light region. The optical band gap values of the films are increasing from 3.44 to 4.0 eV at growth temperature from 100 to 400 °C. The structural and optical properties of the films improved with the increase in the deposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kumar, S. Mandal, P.R. Selvakannan, R. Pasricha, A.B. Mandale, M. Sastry, Langmuir 19, 6277 (2003)

    Article  CAS  Google Scholar 

  2. N. Chandrasekharan, P.V. Kamat, J. Phys. Chem. B 104, 10851 (2000)

    Article  CAS  Google Scholar 

  3. G. Peto, G.L. Molnar, Z. Paszti, O. Geszti, A. Beck, L. Guczi, Mater. Sci. Eng. C 19, 95 (2002)

    Article  Google Scholar 

  4. W. Zhang, Y. Li, S. Zhu, F. Wang, Surf. Coat. Technol. 182, 192 (2004)

    Article  CAS  Google Scholar 

  5. Y. Matsumoto, Y. Ishikawa, M. Nishida, S. Ii, J. Phys. Chem. B 104, 4204 (2000)

    Article  CAS  Google Scholar 

  6. M. Andersson, L.O. Sterlund, S. Ljungstrom, A. Palmqvist, J. Phys. Chem. B 106, 10674 (2002)

    Article  CAS  Google Scholar 

  7. G. Benk, P. Myllyperki, J. Pan, A.P. Yartsev, V. Sundstrom, J. Am. Chem. Soc. 125(5), 1118 (2003)

    Article  Google Scholar 

  8. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Solid State Ionics 151, 19 (2002)

    Article  CAS  Google Scholar 

  9. A. Rothschild, A. Levakov, Y. Shapira, N. Ashkenasy, Y. Komem, Surf. Sci. 532, 456 (2003)

    Article  Google Scholar 

  10. T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Thin Solid Films 351, 260 (1999)

    Article  CAS  Google Scholar 

  11. S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Thin Solid Films 392, 338 (2001)

    Article  CAS  Google Scholar 

  12. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mater. 10, 135 (1998)

    Article  Google Scholar 

  13. N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105(15), 3023 (2001)

    Article  CAS  Google Scholar 

  14. R. Mechiakh, N. Ben Sedrine, R. Chtourou, Appl. Surf. Sci. 257, 9103 (2011)

    Article  CAS  Google Scholar 

  15. B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, S. Velumani, Sol. Energy Mater. Sol. Cells 88, 199 (2005)

    Article  CAS  Google Scholar 

  16. H.K. Pulker, G. Paesold, E. Ritter, Appl. Opt. 18, 1969 (1979)

    Article  CAS  Google Scholar 

  17. S. Sin-iti Kitazawa, Y. Choib, S. Yamamoto, Vacuum 74(3–4), 637 (2004)

    Article  Google Scholar 

  18. F. Meng, F. Lu, Vacuum 85, 84 (2010)

    Article  CAS  Google Scholar 

  19. S.K. Zheng, T.M. Wang, G. Xiang, C. Wang, Vacuum 62, 361 (2001)

    Article  CAS  Google Scholar 

  20. Y. Zhang, X. Ma, P. Chen, D. Yang, J. Cryst. Growth 300, 551 (2007)

    Article  CAS  Google Scholar 

  21. F. Hossain, T. Takahashi, J. Nanosci. Nanotechnol. 11, 3222 (2011)

    Article  CAS  Google Scholar 

  22. D. Lucaa, L.S. Hsu, J. Optoelect. Adv. Mater. 5(4), 835 (2003)

    Google Scholar 

  23. S. Sankar, K.G. Gopchandran, Cryst. Res. Technol. 44(9), 989 (2009)

    Article  CAS  Google Scholar 

  24. J. Musil, D. Herman, J. Sicha, J. Vac. Sci. Technol. A 24, 521 (2006)

    Article  CAS  Google Scholar 

  25. R. Gouttebaron, D. Cornelissen, R. Snyders, J.P. Dauchot, M. Wautelet, M. Hecq, Surf. Interface Anal. 30, 527 (2000)

    Article  CAS  Google Scholar 

  26. Z. Lei, L. Jian-She, Trans. Nonferrous Met. Soc. China 17, 772 (2007)

    Article  Google Scholar 

  27. L.J. Meng, C.P. Moreira de Sa, M.P. Dos Santos, Thin Solid Films 239, 117 (1994)

    Article  CAS  Google Scholar 

  28. B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Mater. Sci. Eng. B 176(1), 1 (2011)

    Article  CAS  Google Scholar 

  29. M.B. González, A. Wu, P.M. Vilarinho, Chem. Mater. 18, 1737 (2006)

    Article  Google Scholar 

  30. R. Zhang, L. Gao, Key Eng. Mater. 224–226, 573 (2002)

    Article  Google Scholar 

  31. D.C. Paine, T. Whistion, D. Janiac, R. Bersford, C.O. Yang, B. Lewis, J. Appl. Phys. 85, 8445 (1999)

    Article  CAS  Google Scholar 

  32. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987)

    Article  CAS  Google Scholar 

  33. A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  34. K.L. Chopra, S.R. Das, Thin film solar cells (Plenum press, New York, 1983)

    Google Scholar 

  35. C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Appl. Surf. Sci. 254, 2685 (2008)

    Article  CAS  Google Scholar 

  36. M.R. Teresa, M. Viseu, C. Isabel, Vacuum 52, 115 (1999)

    Article  Google Scholar 

  37. H.R. Fallaha, M. Ghasemia, A. Hassanzadehb, H. Stekic, Mater. Res. Bull. 42(3), 487 (2007)

    Article  Google Scholar 

  38. W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B 70, 261 (2000)

    Article  CAS  Google Scholar 

  39. H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Commun. 87, 847 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (B.S) thanks the Department of Science & Technology, New Delhi, for a research grant under SERC scheme No SR/S1/PC/31/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananthakumar, R., Subramanian, B., Yugeswaran, S. et al. Effect of substrate temperature on structural, morphological and optical properties of crystalline titanium dioxide films prepared by DC reactive magnetron sputtering. J Mater Sci: Mater Electron 23, 1898–1904 (2012). https://doi.org/10.1007/s10854-012-0681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0681-1

Keywords

Navigation