Skip to main content
Log in

Influence of multi-component glass on sintering behavior and microwave properties of Zr non-stoichiometricly substituted Ca[(Li1/3Nb2/3)]O3-δ ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A low melting point multi-component glass (Li2O-B2O3-SiO2-CaO-Al2O3) was incorporated into Zr non-stoichiometric substituted Ca[(Li1/3Nb2/3)]O3-δ ceramic to lower its sintering temperature for LTCC applications. The glass acts as liquid phase sintering aid and it can lower the sintering temperature of the ceramic from 1,170 °C to 900 °C. Dense and perovskite solid solutions can be obtained in all glass doped specimens with, however, a small amount of Ca2Nb2O7-type pyrochlore phase. Raman spectra indicate that the B-site 1:2 ordering structure in Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ ceramic is gradually softened with the increase of the glass content and localized B-site 1:1 ordering domains begin to appear when the glass content reaches 15 wt%. The optimal microwave dielectric properties of εr = 29.37, Qf = 5,420 GHz and τf = −24.9 ppm/°C can be obtained in 5 wt% glass doped Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ ceramic when sintered at 940 °C for 4 h. No chemical reaction exists between Ag and the above ceramic, which indicates itself a potential candidator in LTCC industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.X. Guo, Z.Y. Zhang, L.C. Ong, M.Y.W. Chia, IEEE Microw. Wirel. Compon. Lett. 16, 143–145 (2006)

    Article  Google Scholar 

  2. Y. Dakeya, T. Suesada, K. Asakura, N. Nakajima, H. Mandai, IEEE. MTTS. Int. Microw. Symp. 3, 1693–1696 (2000)

    Google Scholar 

  3. O. Dernovseka, M. Ebersteinb, W.A. Schillerb, A. Naeini, G. Preu, W. Wersing, J. Europ. Ceram. Soc. 21, 1693–1697 (2001)

    Article  Google Scholar 

  4. M. Rahman, K. Shamsaifar, IEEE. MTTS. Int. Microw. Symp. 3, 1767–1770 (2003)

    Google Scholar 

  5. H. Kagata, J. Kato, Jpn. J. Appl. Phys. 33, 5463–5465 (1994)

    Article  CAS  Google Scholar 

  6. I.M. Reaney, D. Iddles, J. Amer. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  7. I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984–3990 (1994)

    Article  CAS  Google Scholar 

  8. T. Kolodiazhnyi, A. Petric, A. Belous, V. Yunov, O. Yancheevskij, J. Mater. Res. 17, 3182–3189 (2002)

    Article  CAS  Google Scholar 

  9. J.B. Lim, D.H. Kim, S. Nahm, J.H. Paik, H.J. Lee, Mater. Res. Bull. 41, 1199–1205 (2006)

    Article  CAS  Google Scholar 

  10. J.W. Choi, C.Y. Kang, S.J. Yoon, H.J. Kim, H.J. Jung, K.H. Yoon, H.J. Kim, H.J. Jung, K.H. Yoon, J. Mater. Res. 14, 3567–3570 (1999)

    Article  CAS  Google Scholar 

  11. J.W. Choi, J.Y. Ha, S.J. Yoon, Jpn. J. Appl. Phys. 43, 223–225 (2004)

    Article  CAS  Google Scholar 

  12. P. Liu, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 40, 5769–5773 (2001)

    Article  CAS  Google Scholar 

  13. J.W. Choi, C.Y. Kang, S.J. Yoon, H.J. Kim, H.J. Jung, K.H. Yoon, Ferroelectrics 262, 167–172 (2001)

    Article  CAS  Google Scholar 

  14. J.Y. Ha, J.W. Choi, S.J. Yoon, D.J. Choi, K.H. Yoon, H.J. Kim, J. Europ. Ceram. Soc. 23, 2413–2416 (2003)

    Article  CAS  Google Scholar 

  15. P. Liu, E.S. Kim, S.G. Kang, H.S. Jang, Mater. Chem. Phys. 79, 270–272 (2003)

    Article  CAS  Google Scholar 

  16. J.Y. Ha, J.W. Choi, C.Y. Kang, S.J. Yoon, D.J. Choi, H.J. Kim, Jpn. J. Appl. Phys. 44, 1322–1325 (2005)

    Article  CAS  Google Scholar 

  17. P. Liu, H. Ogawa, E.S. Kim, A. Kan, J. Europ. Ceram. Soc. 24, 1761–1764 (2003)

    Article  CAS  Google Scholar 

  18. J.X. Tong, Q.L. Zhang, Y.L. Zhu, H.M. Xu, H. Yang, J. Mater. Sci. Engin. 21, 859–861 (2003)

    CAS  Google Scholar 

  19. J.H. Park, Y.J. Choi, J.H. Park, Mater. Chem. Phys. 88, 308–312 (2004)

    Article  CAS  Google Scholar 

  20. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, R.E. Newnham, J. Am. Ceram. Soc. 77, 1909–1916 (1994)

    Article  CAS  Google Scholar 

  21. M.Z. Hu, J. Qian, H.S. Gu, Y.D. Hao, J. Mater. Sci. 41, 6260–6265 (2006)

    Article  CAS  Google Scholar 

  22. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253–290 (1981)

    Article  CAS  Google Scholar 

  23. P.V. Bijumon, M.T. Sebastian, A. Dias, R.L. Moreira, P. Mohanan, J. Appl. Phys. 97(104108), 1–9 (2005)

    Google Scholar 

  24. T. Hirata, K. Ishioka, M. Kitajima, J. Solid State Chem. 124, 353–359 (1996)

    Article  CAS  Google Scholar 

  25. I. Levin, J.Y. Chan, R.G. Geyer, J.E. Maslar, T.A. Vanderah, J. Solid, Stat. Chem. 156, 122–134 (2001)

    Article  CAS  Google Scholar 

  26. E. Husson, L. Abello, A. Morell, Mater. Res. Bull. 25, 539–545 (1990)

    Article  CAS  Google Scholar 

  27. C.H. Wang, X.P. Jing, L. Wang, J. Lu, J. Am. Ceram. Soc. 92, 1547–1551 (2009)

    Article  CAS  Google Scholar 

  28. P.V. Bijumon, M.T. Sebastian, Mater. Sci. Eng. B. 123, 31–40 (2005)

    Article  Google Scholar 

  29. N. Michiura, T. Tatekawa, Y. Higuchi, H. Tamura, J. Am. Ceram. Soc. 78, 793–796 (1995)

    Article  CAS  Google Scholar 

  30. M.Z. Hu, H.S. Gu, X.C. Chu, J. Qian, Z.G. Xia, J. Appl. Phys. 104(124104), 1–10 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the national science foundation of China (No. 61076049) for the financial support of the present work. The authors also appreciate the financial support from the Industry-University-Research Institute Foundation of Guangdong Province (No.2009B090300368) and the natural science foundation of Guangdong Province (No. 9151063101000040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhe Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Fu, Y., Zhou, D. et al. Influence of multi-component glass on sintering behavior and microwave properties of Zr non-stoichiometricly substituted Ca[(Li1/3Nb2/3)]O3-δ ceramic. J Mater Sci: Mater Electron 23, 1775–1782 (2012). https://doi.org/10.1007/s10854-012-0661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0661-5

Keywords

Navigation