Skip to main content
Log in

Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from molten salt method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Ti-doping on the decomposition behavior, crystal structure, sintering behavior and dielectric properties have been investigated for the Ti-doped BiFeO3 ceramics derived from molten salt method. XRD reveals the almost pure phase BiFeO3 is synthesized in the Ti-doped BiFeO3 powders. And the particle size of Ti-doped BiFeO3 powers obviously decreases with the increase of Ti content. However, the sintering temperature elevates significantly after Ti-doping. The DC resistivity can enhance by up to four orders of magnitude (from 104 to 108 Ωm) with only 5 at% Ti doping. But the dielectric constant is suppressed from 104 to 102, and dielectric loss obviously reduces with a small amount of Ti doping. The variation of dielectric properties has been discussed from the decomposition of BiFeO3 phase. The Ti-doping can effectively suppress the decomposition reaction in Ti-doped BiFeO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)

    Article  CAS  Google Scholar 

  3. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  CAS  Google Scholar 

  4. Zheng XH, Chen PJ, Ma N, Ma ZH (2011) J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-011-0533-4

  5. J. Wang, J.B. Neaton, H. Zheng, Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  6. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  CAS  Google Scholar 

  7. Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)

    Article  Google Scholar 

  8. M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003)

    Article  CAS  Google Scholar 

  9. A. Maitre, M. Francois, J.C. Gachon, J. Phase Equilibria. Diffusion 25, 59 (2004)

    CAS  Google Scholar 

  10. S.M. Selbach, M.A. Einarsrud, T. Grande, Chem. Mater. 21, 169 (2009)

    Article  CAS  Google Scholar 

  11. M.M. Kumar, V.R. Palkar, K. Srinivas, V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  CAS  Google Scholar 

  12. M. Kumar, K.L. Yadav, J. Phys. Condens. Matter. 18, L503 (2006)

    Article  CAS  Google Scholar 

  13. C. Lepoittevin, S. Malo, N. Barrier, N. Nguyen, G.V. Tendeloo, M. Hervieu, J. Solid State Chem. 181, 2601 (2008)

    Article  CAS  Google Scholar 

  14. J. Schiemer, R. Withers, L. Noren, Y. Liu, L. Bourgeois, G. Stewart, Chem. Mater. 21, 4223 (2009)

    Article  CAS  Google Scholar 

  15. Y. Wang, G. Xu, Ceram. Inter. 35, 1285 (2009)

    Article  CAS  Google Scholar 

  16. J.H. Xu, H. Ke, D.C. Jia, W. Wang, Y. Zhou, J. Alloys Comp. 472, 473 (2009)

    Article  CAS  Google Scholar 

  17. L. Zhang, X.F. Cao, Y.L. Ma, X.T. Chen, Z.L. Xue, J. Solid State Chem. 181, 1761 (2010)

    Article  Google Scholar 

  18. J. Chen, X.R. Xing, A. Watson, W. Wang, R.B. Yu, J.X. Deng, L. Yan, C. Sun, X.B. Chen, Chem. Mater. 19, 3598 (2007)

    Article  CAS  Google Scholar 

  19. X. He, L. Gao, Ceram. Inter. 35, 975 (2009)

    Article  CAS  Google Scholar 

  20. K.L. Yadav, J. Nanosci. Nanotechnol. 11, 2682 (2011)

    Article  CAS  Google Scholar 

  21. M. Valant, A.K. Axelsson, N. Alford, Chem. Mater. 19, 5431 (2007)

    Article  CAS  Google Scholar 

  22. X.H. Zheng, C. Zhang, B.L. Liang, D.P. Tang, X. Huang, X.L. Liu, J. Alloys Compd. 505, L10 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University of Fujian Province (XSJRC2007-16) and Fuzhou University Science Foundation (2010-XQ-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X.H., Ma, Z.H., Chen, P.J. et al. Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from molten salt method. J Mater Sci: Mater Electron 23, 1533–1537 (2012). https://doi.org/10.1007/s10854-012-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0624-x

Keywords

Navigation