Skip to main content
Log in

Creep mitigation in Sn–Ag–Cu composite solder with Ni-coated carbon nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the powder metallurgy route was used to successfully incorporate Ni-coated carbon nanotubes into SnAgCu solder, to form a nanocomposite solder. Nanoindentation tests were performed on both composite and SnAgCu solder samples to investigate their creep behaviour at room temperature. Characterization results revealed that with the addition of Ni-coated carbon nanotubes, the creep behaviour of composite solder improved significantly as compared to that of the unreinforced solder alloy. Moreover, increasing the maximum load from 20 to 100 mN increased the percentage reduction in creep strain rate from 4 to 28%, for the composite compared to SnAgCu solder after 300 s of holding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Chen, I. Dutta, J. Electron. Mater. 37, 347 (2008)

    Article  Google Scholar 

  2. M. Kerr, N. Chawla, Acta Mater. 52, 4527 (2004)

    Article  CAS  Google Scholar 

  3. H.T. Lee, H.S. Lin, C.S. Lee, P.W. Chen, Mat. Sci. Eng. A 407, 36 (2005)

    Article  Google Scholar 

  4. R. Mahmudi, A.R. Geranmayeh, M. Bakherad, M. Allami, Mat. Sci. Eng. A 457, 173 (2007)

    Article  Google Scholar 

  5. S.M.L. Nai, J. Wei, M. Gupta, Mater. Sci. Technol. 24, 443 (2008)

    Article  CAS  Google Scholar 

  6. J.K. Shang, Q.L. Zeng, L. Zhang, Q.S. Zhu, J Mater Sci. Mater. El. 18, 211 (2007)

    Article  CAS  Google Scholar 

  7. Y.W. Shi, J. Tian, H. Hao, Z.D. Xia, Y.P. Lei, F. Guo, J. Alloys Compd. 453, 180 (2008)

    Article  CAS  Google Scholar 

  8. C. Wu, M. Huang, J. Electron. Mater. 31, 442 (2002)

    Article  CAS  Google Scholar 

  9. H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, Z.D. Xia, J. Electron. Mater. 36, 766 (2007)

    Article  CAS  Google Scholar 

  10. W.P. Liu, N.C. Lee, JOM. 59, 26 (2007)

    Article  CAS  Google Scholar 

  11. M. Pei, J.M. Qu, J. Electron. Mater. 37, 331 (2008)

    Article  CAS  Google Scholar 

  12. M.J. Rizvi, C. Bailey, Y.C. Chan, H. Lu, J. Alloys Compd. 438, 116 (2007)

    Article  CAS  Google Scholar 

  13. S. Iijima, Nature. 354, 56 (1991)

    Article  CAS  Google Scholar 

  14. R. George, K.T. Kashyap, R. Raw, S. Yamdagni, Scr. Mater. 53, 1159 (2005)

    Article  CAS  Google Scholar 

  15. K.T. Kim, J. Eckert, S.B. Menzel, T. Gemming, S.H. Hong, Appl. Phys. Lett. 92, 121901 (2008)

    Article  Google Scholar 

  16. K.T. Kim, S.I. Cha, S.H. Hong, Mat. Sci. Eng. A 430, 27 (2006)

    Article  Google Scholar 

  17. Y. Sun, J.R. Sun, M. Liu, Q.F. Chen, Nanotechnology. 18, 505704 (2007)

    Article  Google Scholar 

  18. K.M. Kumar, V. Kripesh, A.O. Andrew, J. Alloys Compd. 450, 229 (2008)

    Article  CAS  Google Scholar 

  19. K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 455, 148 (2008)

    Article  CAS  Google Scholar 

  20. S.M.L. Nai, J. Wei, M. Gupta, J. Electron. Mater. 35, 1518 (2006)

    Article  CAS  Google Scholar 

  21. S.M.L. Nai, J. Wei, M. Gupta, Mat. Sci. Eng. A 423, 166 (2006)

    Article  Google Scholar 

  22. S.M.L. Nai, J. Wei, M. Gupta, J. Electron. Mater. 37, 515 (2008)

    Article  CAS  Google Scholar 

  23. S.M.L. Nai, J. Wei, M. Gupta, J. Alloys Compd. 473, 100 (2009)

    Article  CAS  Google Scholar 

  24. A.M.K. Esawi, M.A. El Borady, Compos. Sci. Technol. 68, 486 (2008)

    Article  CAS  Google Scholar 

  25. C. Guerret-Piecourt, Y. Lebouar, A. Loiseau, H. Pascard, Nature. 372, 761 (1994)

    Article  CAS  Google Scholar 

  26. T.P. Kumar, R. Ramesh, Y.Y. Lin, G.T.K. Fey, Electrochem. Commun. 6, 520 (2004)

    Article  CAS  Google Scholar 

  27. S.M.L. Nai, Development of Advanced Nanocomposites for Micro/Nanosystems Packaging (National University of Singapore, Singapore, 2008)

    Google Scholar 

  28. E. Carreňo-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forr, R. Schaller, Phys. Status Solidi. A 201, R53 (2004)

    Article  Google Scholar 

  29. B. Lim, C.J. Kim, B. Kim, U. Shim, S. Oh, B.H. Sung, J.H. Choi, S. Baik, Nanotechnology. 17, 5759 (2006)

    Article  CAS  Google Scholar 

  30. M. Olek, K. Kempa, S. Jurga, M. Giersig, Langmuir. 21, 3146 (2005)

    Article  CAS  Google Scholar 

  31. P. Yao, P. Liu, J. Liu, J. Alloys Compd. 462, 73 (2008)

    Article  CAS  Google Scholar 

  32. E. Durgun, S. Dag, V.M.K. Bagci, O. Gulseren, T. Yildirim, S. Ciraci, Phys. Rev. B 67, 201401 (2003)

    Article  Google Scholar 

  33. S.H. Yang, W.H. Shin, J.W. Lee, S.Y. Kim, S.I. Woo, J.K. Kang, J. Phys. Chem. B 110, 13941 (2006)

    Article  CAS  Google Scholar 

  34. C.Z. Liu, J. Chen, Mat. Sci. Eng. A 448, 340 (2007)

    Article  Google Scholar 

  35. Y.C. Liu, J.W.R. Teo, S.K. Tung, K.H. Lam, J. Alloys Compd. 448, 340 (2008)

    Article  CAS  Google Scholar 

  36. Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci.: Mater. Electron. 22, 315 (2011)

    Article  CAS  Google Scholar 

  37. A.K. Dutta, D. Penumadu, B. Files, J. Mater. Res. 19, 158 (2004)

    Article  CAS  Google Scholar 

  38. K.M. Kumar, V. Kripesh, L. Shen, K. Zeng, A.A.O. Tay, Mat. Sci. Eng. A 423, 57 (2006)

    Article  Google Scholar 

  39. Y.D. Han, H.Y. Jing, S.M.L. Nai, C.M. Tan, J. Wei, L.Y. Xu, S.R. Zhang, J. Phys. D Appl. Phys. 42, 125411 (2009)

    Article  Google Scholar 

  40. S. Kang, D.-Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y. Charles Goldsmith, K. Puttlitz, W. Choi, JOM. 55, 61 (2003)

    Article  CAS  Google Scholar 

  41. F.A. Stam, E. Davitt, Microelectron. Reliab. 41, 1815 (2001)

    Article  Google Scholar 

  42. O. Fouassier, J.M. Heintz, J. Chazelas, P.M. Geffroy, J.F. Silvain, J. Appl. Phys. 100, 043519 (2006)

    Article  Google Scholar 

  43. X.D. Li, H.S. Gao, W.A. Scrivens, D.L. Fei, X.Y. Xu, M.A. Sutton, A.P. Reynolds, M.L. Myrick, Nanotechnology. 15, 1416 (2004)

    Article  CAS  Google Scholar 

  44. W. Zhang, A. Joshi, Z. Wang, R.S. Kane, N. Koratkar, Nanotechnology. 18, 185703 (2007)

    Article  Google Scholar 

  45. T. Langdon, Metall. Mater. Trans. A 33, 249 (2002)

    Article  Google Scholar 

  46. R. Mahmudi, A.R. Geranmayeh, H. Noori, M. Shahabi, Mat. Sci. Eng. A 491, 110 (2008)

    Article  Google Scholar 

  47. G. Sharma, R.V. Ramanujan, T.R.G. Kutty, G.P. Tiwari, Mat. Sci. Eng. A 278, 106 (2000)

    Article  Google Scholar 

  48. S.M. Zhu, S.C. Tjong, J.K.L. Lai, Acta Mater. 46(9), 2969 (1998)

    Article  CAS  Google Scholar 

  49. M. He, Z. Chen, G.J. Qi, Acta Mater. 52, 2047 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding by National Natural Science Foundation of China (Grant Nos. 50975196 and 50805103), Key Project in the Science & Technology Pillar Program of Tianjin (Grant No. 11ZCKFGX03000) and Research Fund of Tianjin Key Laboratory of Advanced Joining Technology. The authors would also like to thank Liu Yuchan from Singapore Institute of Manufacturing Technology for her help in the nanoindentation tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y.D., Jing, H.Y., Nai, S.M.L. et al. Creep mitigation in Sn–Ag–Cu composite solder with Ni-coated carbon nanotubes. J Mater Sci: Mater Electron 23, 1108–1115 (2012). https://doi.org/10.1007/s10854-011-0557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0557-9

Keywords

Navigation