Skip to main content
Log in

Effect of intermetallic compounds on fracture behaviors of Sn3.0Ag0.5Cu lead-free solder joints during in situ tensile test

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, in situ tensile tests under various amounts of deformation were performed on Sn3.0Ag0.5Cu lead-free solder joints subjected to multi-reflow and isothermal aging processes by using a scanning electron microscope. Microstructure evolution and deformation behavior of the solder joints were observed. Effects of the intermetallic compound (IMC) Cu6Sn5 on fracture behaviors of the solder joints were investigated. Results showed that the Sn3.0Ag0.5Cu lead-free solder joints contained only a few Sn grains, and the sequence and degree of plastic deformation varied for the different grains in the same solder joint due to the strong anisotropic properties of Sn grains. Further experiments revealed that plastic deformation occured primarily in the form of slip bands in the solder joints during the in situ tensile test. Various fracture modes including intergranular and phase boundary fractures were observed. The fracture behaviors of solder joints were significantly affected by morphologies and distributions of the Cu6Sn5 IMCs. It was found that Cu6Sn5 particles located at the grain boundaries are apt to become crack sources, and that the long rod shaped Cu6Sn5 were easily broken. However, spherical Cu6Sn5 hardly deformed during the tensile test, resulting in dynamic recrystallization. In this case, fracture occured at the sub-grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002)

    Google Scholar 

  2. K. Sakuma, P.S. Andry, C.K. Tsang, S.L. Wright, IBM J. Res. Dev. 52, 611 (2008)

    Article  CAS  Google Scholar 

  3. S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shin, H.M. Lee, J. Electr. Mater. 38, 2461 (2009)

    Google Scholar 

  4. L.M. Yin, X.P. Zhang, C. Lu, J. Electr. Mater. 38, 2179 (2009)

    Article  CAS  Google Scholar 

  5. P.L. Tu, Y.C. Cuan, J.L. Lai, IEEE Trans. Adv. Pack. 24, 197 (2001)

    Article  CAS  Google Scholar 

  6. D.Z. Li, C.Q. Liu, P.C. Paul, Mater. Sci. Eng. A 391, 95 (2005)

    Article  Google Scholar 

  7. M.N. Islam, A. Sharif, Y.C. Chan, J. Electr. Mater. 34, 143 (2005)

    Article  CAS  Google Scholar 

  8. W.K. Choi, S.K. Kang, D.Y. Shih, J. Electr. Mater. 31, 1283 (2002)

    Article  CAS  Google Scholar 

  9. Z. Huang, P.P. Conway, R.C. Thomson, Microelectron. Relia. 47, 1997 (2007)

    Article  CAS  Google Scholar 

  10. C.E. Ho, Y.W. Lin, S.C. Yang, J. Electr. Mater. 35, 1017 (2006)

    Article  CAS  Google Scholar 

  11. C.K. Wong, J.H.L. Pang, J.W. Tew, Microelectron. Relia. 48, 611 (2008)

    Article  CAS  Google Scholar 

  12. C.C. Chang, Y.W. Lin, Y.W. Wang, J. Alloys Compd. 492, 99 (2010)

    Article  CAS  Google Scholar 

  13. A.U. Telang, T.R. Bieler, JOM. 6, 44 (2005)

  14. Y. Ding, C.Q. Wang, Y.H. Tian, Metallur. Mater. Trans. A Phys. Metall. Mater. Sci. A 37, 1017 (2006)

    Article  Google Scholar 

  15. Y. Ding, C.Q. Wang, Y.H. Tain, J. Alloys Compd. 428, 274 (2007)

    Article  CAS  Google Scholar 

  16. Y. Sun, J. Liang, Z.H. Xu, J. Electr. Mater. 38, 400 (2009)

    Article  CAS  Google Scholar 

  17. X.Y. Li, X.H. Yang, W.Z. Dui, Mech. Strength. 30, 024 (2008)

    Google Scholar 

  18. D.G.. Kim, H.S. Jang, J.W. Kim, J. Mater. Sci. Mater. Electr. 16, 603 (2005)

    Google Scholar 

  19. R. Kinyanjui, L.P. Lehman, L. Zavalij, E. Cotts, J. Mater. Res. 20, 2914 (2005)

    Article  CAS  Google Scholar 

  20. W.P. Mason, H.E. Bommel, J. Acoust. Soc. Am. 28, 930 (1956)

    Article  Google Scholar 

  21. J.A. Rayne, B.S. Chandrasekhar, Phys. Rev. 120, 1658 (1960)

    Article  CAS  Google Scholar 

  22. J.J. Sundelin, S.T. Nurmib, T. K. Lepist¨o, Mater. Sci. Eng. A 474, 201 (2008)

    Google Scholar 

  23. B. Zhou, T.R. Bieler, T.K. Lee, K.C. Liu, J. Electr. Mater. 39, 2669 (2010)

    Article  CAS  Google Scholar 

  24. A.U. Telang, T.R. Bieler, A. Zamiri, F. Pourboghrat, Acta Mater 55, 2265 (2007)

    Google Scholar 

  25. Y. Sun, J. Liang, Z.H. Xu, G.F. Wang, X.D. Li, J. Mater. Sci. Mater. Electr. 19, 514 (2008)

    Article  CAS  Google Scholar 

  26. L. Jiang, N. Chawla, Scripta Mater. 63, 480 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science Foundation of China (Grant No. 51075103). Authors are grateful to the projects (HIT. NSRIF 2009036) supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Liu, W., An, R. et al. Effect of intermetallic compounds on fracture behaviors of Sn3.0Ag0.5Cu lead-free solder joints during in situ tensile test. J Mater Sci: Mater Electron 23, 136–147 (2012). https://doi.org/10.1007/s10854-011-0538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0538-z

Keywords

Navigation