Role of annealing time and temperature on structural and superconducting properties of (Bi, Pb)-2223 thin films produced by sputtering

  • G. YildirimEmail author
  • A. Varilci
  • M. Akdogan
  • C. Terzioglu


This study reports the effect of annealing time (15 min, 1.5 and 3 h) and temperature (850, 860 and 870 °C) on the structural and superconducting properties of thin films by means of scanning electron microscopy (SEM), X-Ray analysis (XRD), electron dispersive X-Ray (EDX), resistivity and transport critical current density (Jc) measurements. Zero resistivity transition temperatures (Tc) of the films produced are estimated from the dc resistivity measurements. In addition, the phase and lattice parameters are determined from XRD patterns when the microstructure, surface morphology and element composition analyses of the samples are investigated by SEM and EDX measurements, respectively. The results indicate that Tc values of the films obtained are observed to be in a range of 23–102 K. The Tc of the film annealed at 870 °C for 3 h is found to be the smallest (23 K) while the film annealed at 860 °C for 3 h is noted to obtain the maximum Tc value (102 K). On the other hand, the maximum (minimum) Jc is found to be about 2068 A/cm2 (20 A/cm2) for the film annealed at 860 °C for 3 h (870 for 3 h). Moreover, according to the refinement of cell parameters done by considering the structural modulation, the greatest Bi-2223 phase fraction is noticed to belong to the film annealed at 860 °C for 3 h. Furthermore, SEM measurements show that the best surface morphology, largest grain size and grain connectivity are observed for that film. Based on these results, Tc and Jc values of the samples studied are found to depend strongly on the microstructure. As for EDX results, the elements used for the preparation of samples are observed to distribute homogeneously. The aim of this study is not only to investigate the changes of structural and superconducting properties of the films produced in the varied time and temperature but also to determine the best ambient for the film fabrication and show the feasibility of obtaining Bi-2223 film with tailored structure.


Critical Current Density Superconducting Property Scanning Electron Microscope Measurement High Critical Temperature Transport Critical Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is dedicated to Izzet Baysal on the occasion of his 11th death anniversary.


  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. Lett 27, L209 (1988)CrossRefGoogle Scholar
  2. 2.
    J.M. Tarascon, Y. Lepage, L.H. Greene, B.G. Bagley, P. Barboux, D.M. Hwang, G.W. Hull, W.R. Makinnon, M. Giroud, Phys. Rev. B 38, 2504 (1988)CrossRefGoogle Scholar
  3. 3.
    N. Ghazanfari, A. Kilic, A. Gencer, H. Ozkana, Solid State Commun. 144, 210 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Makise, S. Uchida, S. Horii, J. Shimoyama, K. Kishio, Physica C 460–462, 772 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Yildirim, Y. Zalaoglu, M. Akdogan, S. P. Altintas, A. Varilci, C. Terzioglu, J. Supercond, Nov. Magn. (2011) doi: 10.1007/s10948-011-1174-9
  6. 6.
    A. Tsukamoto, K. Imagawa, M. Hiratani, K. Kanehori, K. Takagi, Jpn. J. Appl. Phys. 30, L830 (1991)CrossRefGoogle Scholar
  7. 7.
    A.N. Jannah, S.A. Halim, H. Abdullah, Eur. J. Sci. Res. 29, 438 (2009)Google Scholar
  8. 8.
    V. Hakuraku, Z. Mori, S. Oku, Supercond. Sci. Technol. 6, 408 (1993)CrossRefGoogle Scholar
  9. 9.
    G. Yildirim, M. Akdogan, S.P. Altintas, M. Erdem, C. Terzioglu, A. Varilci, Physica B 406, 1853 (2011)CrossRefGoogle Scholar
  10. 10.
    M.A. Aksan, M.E. Yakinci, A. Guldeste, Thin Solid Films 515, 8022 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Martinez, A. Marino, J.E. Rodriguez, Physica C 408–410, 568 (2004)CrossRefGoogle Scholar
  12. 12.
    M.A. Aksan, S. Altin, M.E. Yakinci, A. Guldeste, Y. Balci, Mater. Sci. Tech. Lond 27, 314 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Runde, IEEE T. Appl. Supercond. 5, 813 (1995)CrossRefGoogle Scholar
  14. 14.
    A. Godeke, D. Cheng, D.R. Dietderich, C.D. English, H. Felice, C.R. Hannaford, S.O. Prestemon, G. Sabbi, R.M. Scanlan, Y. Hikichi, J. Nishioka, T. Hasegawa, IEEE T. Appl. Supercond. 18, 516 (2008)CrossRefGoogle Scholar
  15. 15.
    H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, AIP Conf. Proc. 986, 423 (2008)CrossRefGoogle Scholar
  16. 16.
    S.E. Mousavi Ghahfarokhi, M. Zargar Shoushtari, Physica B 405, 4643 (2010)CrossRefGoogle Scholar
  17. 17.
    K.A. Sarkar, I. Maartense, T.L. Peterson, B. Kumar, J. Appl. Phys. 66, 3717 (1989)CrossRefGoogle Scholar
  18. 18.
    C.K. Rhee, C.J. Kim, H.G. Lee, I.H. Kuk, J.M. Lee, I.S. Chang, C.S. Rim, P.S. Han, S.I. Pyun, D.Y. Won, Jpn. J. Appl. Phys. 28, L1137 (1989)CrossRefGoogle Scholar
  19. 19.
    E. Giannini, E. Bellingeri, R. Passerini, R. Flükiger, Physica C 315, 185 (1999)CrossRefGoogle Scholar
  20. 20.
    I.V. Kityk, J. Phys. Condensd. Mat. 6, 4119 (1994)CrossRefGoogle Scholar
  21. 21.
    H. El Alami, I. Rannou, C.D. Cavellin, Physica C 406, 131 (2004)CrossRefGoogle Scholar
  22. 22.
    A.M. Saleh, M.M. Abu-Samreh, M.H. Soliman, A.A. Leghrouz, R.M.L. Ketaneh, S. Darwish, M.I. Abu Taha, Thin Solid Films 468, 93 (2004)CrossRefGoogle Scholar
  23. 23.
    Y. Hakuraku, Y. Shimada, M. Itoh, Supercond. Sci. Technol. 10, 325 (1997)CrossRefGoogle Scholar
  24. 24.
    M. Sugano, K. Osamura, W. Prusseit, R. Semerad, K. Itoh, T. Kiyoshi, Supercond. Sci. Technol. 18, 369 (2005)CrossRefGoogle Scholar
  25. 25.
    M.E. Yakinci, Y. Balci, M.A. Aksan, Y. Aydogdu, H. Ates, J. Low, Temp. Phys. 117, 645 (1999)CrossRefGoogle Scholar
  26. 26.
    Y. Iijima, K. Kakimoto, Y. Sutoh, S. Ajimura, T. Saito, Supercond. Sci. Technol. 17, S264 (2004)CrossRefGoogle Scholar
  27. 27.
    A. Kursumovic, R.I. Tomov, R. Huhne, J.L. MacManus-Driscoll, B.A. Glowacki, J.E. Evetts, Supercond. Sci. Technol. 17, 1215 (2004)CrossRefGoogle Scholar
  28. 28.
    G. Leroy, J. Gest, L.K.J. Vandamme, J.C. Carru, Physica C 425, 27 (2005)CrossRefGoogle Scholar
  29. 29.
    J.S. Moodera, R. Meservey, J.E. Tkaczyk, C.X. Hao, G.A. Gibson, P.M. Tedrow, Phys. Rev. B 37, 619 (1988)CrossRefGoogle Scholar
  30. 30.
    B.F. Azzouz, A. M’chirgui, B. Yangui, C. Boulesteix, B.M. Salem, Physica C 356, 83 (2001)CrossRefGoogle Scholar
  31. 31.
    B.D. Cullity, Element of X-ray Diffraction, 3rd edn. (Addition-Wesley, Reading MA, 2001), pp. 80–90Google Scholar
  32. 32.
    E. Yucel, C. Terzioglu, A. Varilci, I. Belenli, J. Mater. Sci.-Mater. El. doi: 10.1007/s10854-010-0274-9
  33. 33.
    A. Ianculescu, M. Gartner, B. Despax, V. Bley, Th. Leby, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344 (1996)CrossRefGoogle Scholar
  34. 34.
    J. Economy, R. Anderson, Inorg. Chem. 5, 989 (1966)CrossRefGoogle Scholar
  35. 35.
    L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma, Y. Qitan, Mater. Lett. 58, 3301 (2004)CrossRefGoogle Scholar
  36. 36.
    E. Budak, C. Bozkurt, Physica B 405, 4702 (2010)CrossRefGoogle Scholar
  37. 37.
    J. Jiang, Mater. Lett. 61, 3239 (2007)CrossRefGoogle Scholar
  38. 38.
    T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, Thin Solid Films 516, 2913 (2008)CrossRefGoogle Scholar
  39. 39.
    M.R. Persland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Floer, Physica C 176, 95 (1991)CrossRefGoogle Scholar
  40. 40.
    M. Akdogan, C. Terzioglu, A. Varilci, I. Belenli, Physica B 405, 4010 (2010)CrossRefGoogle Scholar
  41. 41.
    O. Ozturk, D. Yegen, M. Yilmazlar, A. Varilci, C. Terzioglu, Physica C 451, 113 (2007)CrossRefGoogle Scholar
  42. 42.
    M. Erdem, O. Ozturk, E. Yucel, S.P. Altintas, A. Varilci, C. Terzioglu, I. Belenli, Physica B 406, 705 (2011)CrossRefGoogle Scholar
  43. 43.
    C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C 423, 119 (2005)CrossRefGoogle Scholar
  44. 44.
    M.A. Aksan, M.E. Yakinci, K. Kadowaki, J. Supercond. Nov. Magn. 23, 371 (2010)CrossRefGoogle Scholar
  45. 45.
    O. Bilgili, Y. Selamet, K. Kocabas, J. Supercond. Nov. Magn. 21, 439 (2008)CrossRefGoogle Scholar
  46. 46.
    M.T. Malachevsky, C.A. Dovidio, Supercond. Sci. Technol. 18, 289 (2005)CrossRefGoogle Scholar
  47. 47.
    H.J. Lim, J.G. Byrne, Physica B 229, 294 (1997)CrossRefGoogle Scholar
  48. 48.
    A. Tampieri, G. Celotti, S. Lesca, G. Bezzi, T.M.G. La Torretta, G. Magnani, J. Eur. Ceram. Soc. 20, 119 (2000)CrossRefGoogle Scholar
  49. 49.
    A. Biju, R.P. Aloysius, U. Syamaprasad, Supercond. Sci. Technol. 18, 1454 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Yildirim
    • 1
    Email author
  • A. Varilci
    • 1
  • M. Akdogan
    • 1
  • C. Terzioglu
    • 1
  1. 1.Department of PhysicsAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations