Skip to main content

Advertisement

Log in

Influence of sintering temperature on thermoelectric properties of Bi2Te3/Polythiophene composite materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2Te3/Polythiophene (PTH) thermoelectric bulk composite materials were prepared by a two-step method. Firstly, Bi2Te3 and PTH nanopowders were prepared by hydrothermal synthesis and chemical oxidative polymerization, respectively. Secondly, the mixture of the Bi2Te3 and PTH nanopowders (50:50 wt) was pressed under vacuum at 80 MPa and 298, 473, or 623 K. For comparison, Bi2Te3 powders were hot pressed at 623 K. The bulk materials were analyzed by conventional methods, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and field emission scanning electron microscopy equipped with electron dispersive X-ray spectroscopy. The XRD and TGA results showed that the PTH decomposed when the hot pressing temperature exceeded 473 K, and Bi2Te2S phase was formed. The thermoelectric properties of the bulk composite materials were investigated. The composite pressed at 623 K showed a higher power factor, ~2.54 μ Wm−1 K−2 at 473 K, which is as ~20 times as that of the composite pressed at 473 K, although, it is still much lower than that of the pressed Bi2Te3 material (~1,266 μ Wm−1 K−2 at 348 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818–821 (2004)

    Article  CAS  Google Scholar 

  2. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  3. A. Majumdar, Science 303, 777–778 (2004)

    Article  CAS  Google Scholar 

  4. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597–602 (2001)

    Article  CAS  Google Scholar 

  5. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008)

    Article  Google Scholar 

  6. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009)

    Article  Google Scholar 

  7. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  8. J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 49, 1237–1247 (1988)

    Article  CAS  Google Scholar 

  9. H. Yan, N. Sada, N. Toshima, J. Therm. Anal. Calorim. 69, 881–887 (2002)

    Article  CAS  Google Scholar 

  10. J. Liu, L.M. Zhang, L. He, X.F. Tang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 18, 53–55 (2003)

    Google Scholar 

  11. J.J. Li, X.F. Tang, H. Li, Y.G. Yan, Q.J. Zhang, Synth. Met. 160, 1153–1158 (2010)

    Article  CAS  Google Scholar 

  12. Y.N. Sun, Z.M. Wei, W. Xu, D.B. Zhu, Synth. Met. 160, 2371–2376 (2010)

    Article  CAS  Google Scholar 

  13. B.Y. Lu, C.C. Liu, S. Lu, J.K. Xu, F.X. Jiang, Y.Z. Li, Z. Zhang, Chin. Phys. Lett. 27, 4 (2010)

    CAS  Google Scholar 

  14. Q. Yao, L.D. Chen, W.Q. Zhang, S.C. Liufu, X.H. Chen, Acs Nano 4, 2445–2451 (2010)

    Article  CAS  Google Scholar 

  15. H. Liu, J.Y. Wang, X.B. Hu, R.I. Boughton, S.R. Zhao, Q. Li, M.H. Jiang, Chem. Phys. Lett. 352, 185–190 (2002)

    Article  CAS  Google Scholar 

  16. X.B. Zhao, S.H. Hu, M.J. Zhao, T.J. Zhu, Mater. Lett. 52, 147–149 (2002)

    Article  CAS  Google Scholar 

  17. N. Toshima, M. Imai, S. Ichikawa, J. Electron. Mater. 40, 898–902 (2010)

    Article  Google Scholar 

  18. Y. Li, Q. Zhao, Y.G. Wang, K. Bi, Mater. Sci. Semicond. Process. doi:10.1016/j.mssp.2011.02.019 (2011)

  19. K. Majid, R. Tabassum, A.F. Shah, S. Ahmad, M.L. Singla, J. Mater. Sci. Mater. Electron. 20, 958–966 (2009)

    Google Scholar 

  20. A. Uygun, A.G. Yavuz, S. Sen, M. Omastova, Synth. Met. 159, 2022–2028 (2009)

    Article  CAS  Google Scholar 

  21. O.Y. Plotinskaya, F. Damian, V.Y. Prokofiev, V.A. Kovalenker, G. Damian, Carpath. J. Earth. Env. 4, 89–100 (2009)

    Google Scholar 

  22. M.R. Karim, C.J. Lee, M.S. Lee, J. Polym. Sci. Part A Polym. Chem. 44, 5283–5290 (2006)

    Article  CAS  Google Scholar 

  23. Y. Du, K.F. Cai, Z. Qin, S.Z. Shen, P.S. Casey. In: Conference on mechanical, industrial, and manufacturing engineering (MIME 2011) 462–465 (Australia, Melbourne, 15–16 January, 2011, 2011)

  24. X.G. Li, J. Li, M.R. Huang, Chem. Eur. J. 15, 6446–6455 (2009)

    Article  CAS  Google Scholar 

  25. M.D. Lu, S.M. Yang, Synth. Met. 154, 73–76 (2005)

    Article  CAS  Google Scholar 

  26. Y. Du, K.F. Cai, H. Li, B.J. AN, J. Electron. Mater. 40, 515–522 (2010)

    Google Scholar 

  27. D.C. Grauer, Y.S. Hor, A.J. Williams, R.J. Cava, Mater. Res. Bull. 44, 1926–1929 (2009)

    Article  CAS  Google Scholar 

  28. K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa, Y. Shinohara, Jpn. J. Appl. Phys. 48, 4 (2009)

    Article  Google Scholar 

  29. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Development (Springer, New York, 2001), p. 43

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (50872095) and 973 Program (2007CB607500). The authors would like to thank China Scholarship Council for the financial support for Yong Du’s study at CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kefeng F. Cai or Shirley Z. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Cai, K.F., Shen, S.Z. et al. Influence of sintering temperature on thermoelectric properties of Bi2Te3/Polythiophene composite materials. J Mater Sci: Mater Electron 23, 870–876 (2012). https://doi.org/10.1007/s10854-011-0509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0509-4

Keywords

Navigation