Skip to main content
Log in

Morphology controlled synthesis of ZnO nanostructures by varying pH

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanostructures have been synthesized in a controlled manner by varying the pH of the precursor solution using hydrothermal technique. The morphological changes of the prepared ZnO nanostructures have been investigated in the range of pH 5–10. Radial hexagonal rod-like shape is formed at lower pH values of 5 and 6 whereas, flower-like shape is obtained for higher pH values of 9 and 10. Flake-like structure is observed at moderate pH of 8. The prepared ZnO nanostructures have been characterized using X-ray diffraction technique (XRD), energy dispersive X-ray analysis, scanning electron microscope and FTIR spectroscopy. XRD results show that the prepared ZnO nanostructures exhibit hexagonal wurtzite structure. The growth mechanism suggests that the supersaturation of the precursor results in various nucleation habits, which induce the formation of ZnO nanostructures with different morphologies. UV–Vis spectroscopy and photoluminescence were applied to study the optical properties. The photoluminescence spectrum demonstrated two emission bands, a near band edge emission in the UV region and a strong deep band emission in the visible region. The change in pH from 5 to 10 results in band gap variations of 3.47–3.97 eV and blue-shift in the peak emission of visible PL from 560 to 460 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Yu, L. Hong-Bing, L. Lei, L. Jin-Chai, W. Yun, F. Qiang, Phys. E 41, 729 (2009)

    Article  Google Scholar 

  2. M.H. Kim, Y.H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, Nano Lett. 4, 1059 (2004)

    Article  CAS  Google Scholar 

  3. W. Zhang-lin, J. Mater. Chem. 15, 1021 (2005)

    Google Scholar 

  4. W. Zhong-lin, J. Mater. Today 7, 26 (2004)

    Google Scholar 

  5. W.C. Shih, M.S. Wu, J. Cryst. Growth 137, 319 (1994)

    Article  CAS  Google Scholar 

  6. Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004)

    Article  CAS  Google Scholar 

  7. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, Appl. Phys. Lett. 81, 3046 (2002)

    Article  CAS  Google Scholar 

  8. J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 344, 97 (2001)

    Article  CAS  Google Scholar 

  9. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  CAS  Google Scholar 

  10. B. Illy, B.A. Shollock, J.L. MacManus-Driscoll, M.P. Ryan, Nanotechnology 16, 320 (2005)

    Article  CAS  Google Scholar 

  11. S.A. Studenkin, N. Golego, M. Cocivera, J. Appl. Phys. 83, 2104 (1998)

    Article  Google Scholar 

  12. M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 306, 78 (1997)

    Article  CAS  Google Scholar 

  13. D. Vernardou, G. Kenanakis, S. Couris, A.C. Manikas, G.A. Voyiatzis, M.E. Pemble, E. Koudoumas, N. Katsarakis, J. Cryst. Growth 308, 105 (2007)

    Article  CAS  Google Scholar 

  14. N. Rajeswari Yogamalar, R. Srinivasan, A. Chandra Bose, Opt. Mater. 31, 1570 (2009)

    Article  Google Scholar 

  15. O. Lupan, L. Chowa, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, H. Heinrich, Mater. Sci. Eng. B 145, 57 (2007)

    Article  CAS  Google Scholar 

  16. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003)

    Article  CAS  Google Scholar 

  17. S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley, D. Cherns, Appl. Phys. A 79, 1169 (2004)

    Article  CAS  Google Scholar 

  18. Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, X. Fan, J. Phys. Chem. B 110, 20263 (2006)

    Article  CAS  Google Scholar 

  19. U. Pal, P. Santiago, J. Phys. Chem. B 109, 32 (2005)

    Google Scholar 

  20. X. Gao, X. Li, W. Yu, J. Phys. Chem. B 109, 1155 (2005)

    Article  CAS  Google Scholar 

  21. S. Maensiri, C. Masingboon, V. Promarak, S. Seraphin, Opt. Mat. 29, 1700 (2007)

    Article  CAS  Google Scholar 

  22. H. Wei, Y. Wu, N. Lun, C. Hu, Mater. Sci. Eng. A 80, 393 (2005)

    Google Scholar 

  23. E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Phys. Status Solidif. A 66, 635 (1981)

    Article  CAS  Google Scholar 

  24. F. Xu, Y. Lu, Y. Xie, Y. Liu, J. Phys. Chem. C 113, 3 (2009)

    Google Scholar 

  25. M. Ghosh, A.K. Raychaudhuri, Nanotechnology 19, 445704 (2008)

    Article  Google Scholar 

  26. C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 90, 263501 (2007)

    Article  Google Scholar 

  27. H.-S. Goh, R. Adnan, M.A. Farrukh, Turk. J. Chem. 35, 375 (2011)

    CAS  Google Scholar 

  28. W. Yang, Q. Li, S. Gao, J.K. Shang, Nanoscale Res. Lett. 6, 491 (2011)

    Article  Google Scholar 

  29. G.-C. Yi, C. Wang, W. Park II, Semicond. Sci. Technol. 20, S22 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sambath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambath, K., Saroja, M., Venkatachalam, M. et al. Morphology controlled synthesis of ZnO nanostructures by varying pH. J Mater Sci: Mater Electron 23, 431–436 (2012). https://doi.org/10.1007/s10854-011-0507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0507-6

Keywords

Navigation