Skip to main content
Log in

Fabrication of highly c-axis textured ZnO thin films piezoelectric transducers by RF sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of fabrication parameters on ZnO film properties has been analyzed through conducting several experiment processes to develop an appropriate deposition condition for obtaining highly c-axis textured films. A transducer with the structure of Al/ZnO/Al/Si was fabricated at low deposition rate and under a temperature of 380 °C in a mixture of gases Ar:O2 = 1:3, and RF power of 178 W. Pt/Ti was employed as the bottom electrode of the transducer fabricated in a suitable substrate temperature, which starts increasing at 380 °C with an increment of 20 °C for each 2 h stage of the deposition. Highly c-axis textured ZnO films have been successfully deposited on Pt/Ti/SiO2/Si substrate under feasible conditions, including RF power of 178 W, substrate temperature of 380 °C, deposition pressure of 1.3 Pa and Ar:O2 gas flow ratio of 50%. These conditions have been proposed and confirmed through investigating the influences of the sputtering parameters, such as substrate temperature, RF power and Ar:O2 gas flow ratio, on the properties of ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.A. Elrod, B. Hadimioglu, B.T. Khuri-Yakub, E.G. Rawson, E. Richley, C.F. Quate, J. Appl. Phys. 65, 3441 (1989)

    Article  CAS  Google Scholar 

  2. H. Yu, Q. Zou, J.W. Kwon, E.S. Kim, J. Microelectromech. Syst. 16, 445 (2007)

    Article  CAS  Google Scholar 

  3. H. Fukumoto, J. Aizawa, H. Nakagawa, H. Narumiya, J. Imaging Sci. Technol. 44, 398 (2000)

    CAS  Google Scholar 

  4. X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, S. Maeng, S.H. Kim, Y.J. Choi, D.S. Lee, N.M. Park, J. Park, W.I. Milne, J. Phys. Conf. Ser. 76, 012035 (2007)

    Article  Google Scholar 

  5. K.W. Tay, P.H. Sung, Y.-C. Lin, T.J. Hung, J. Electroceram. 21, 178 (2008)

    Article  CAS  Google Scholar 

  6. Y. Lin, C. Hong, H. Chuang, Appl. Surf. Sci. 254, 3780 (2008)

    Article  CAS  Google Scholar 

  7. J.C. Zesch, B. Hadimioglu, B.T. Khuri-Yakub, M. Lim, R. Lujan, J. Ho, S. Akamine, D. Steinmetz, C.F. Quate, E.G. Rawson, Deposition of highly oriented low-stress ZnO films, in IEEE Ultrasonics Symposium, pp. 445–448 (1991)

  8. Y. Cui, G. Du, Y. Zhang, H. Zhu, B. Zhang, J. Cryst. Growth 282, 389 (2005)

    Article  CAS  Google Scholar 

  9. B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mater. Sci. Eng. B 71, 301 (2000)

    Article  Google Scholar 

  10. K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, H. Takasu, J. Cryst. Growth 214–215, 50 (2000)

    Article  Google Scholar 

  11. R.C. Lin, Y.C. Chen, K.S. Kao, Appl. Phys. A Mater. Sci. Process. 89, 475 (2007)

    Article  CAS  Google Scholar 

  12. Y.H. Hsu, J. Lin, W.C. Tang, J. Mater. Sci. Mater. Electron. 19, 653 (2008)

    Article  CAS  Google Scholar 

  13. S. Chandra, V. Bhatt, R. Singh, Sadhana 34, 543 (2009)

    Article  CAS  Google Scholar 

  14. P.M. Martin, M.S. Good, J.W. Johnston, G.J. Posakony, L.J. Bond, S.L. Crawford, Thin Solid Films 379, 253 (2000)

    Article  CAS  Google Scholar 

  15. J. Golebiowski, J. Mater. Sci. 34, 4661 (1999)

    Article  CAS  Google Scholar 

  16. R. McKeighan, Design guidelines for medical ultrasonic arrays, in Proceedings of SPIE International Symposium on Medical Imaging, vol. 3341, p. 2 (1998)

  17. S. Hirahara, T. Saito, H. Nagato, T. Itakura, S. Takayama, H. Nukada, S. Hattori, N.Y. Kudo, S. Saitoh, M. Sugiuchi, Y. Tokai, F. Murakami, H. Tanaka, C. Tanuma, M. Izumi, I. Amemiya, A. Nakamura, S. Shimizu, K. Okuwada, Ink-Jet Recording Device Having an Ultrasonic Generating Element Array, vol. 6045208, ed. by U.S. Patent (2000)

  18. Z. Hao, P. Wei, K. Eun Sok, in Frequency Control Symposium and Exposition, High-frequency bulk acoustic resonant microbalances in liquid. Proceedings of the 2005 IEEE International (2005)

  19. J.F. Rosenbaum, Bulk Acoustic Wave Theory and Devices (Artch House, Inc, Norwood, Massachusetts, 1988)

    Google Scholar 

  20. S. Singh, R.S. Srinivasa, S.S. Major, Thin Solid Films 515, 8718 (2007)

    Article  CAS  Google Scholar 

  21. Y. Suzaki, A. Kawaguchi, T. Murase, T. Yuji, T. Shikama, D.B. Shin, Y.K. Kim, Physica Status Solidi (C), 8, 503 (2011)

    Article  CAS  Google Scholar 

  22. S.H. Park, B.C. Seo, G. Yoon, H.D. Park, J. Vac. Sci. Technol. A, 18 2432 (2000)

    Google Scholar 

  23. Y.C. Lin, C.R. Hong, H.A. Chuang, Appl. Surf. Sci. 254, 3780 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored partly by the National Science Council of the Republic of China under contract No. NSC 99-2221-E-036-004 and partly by Tatung University under contract No. B99-O05-054. The authors greatly appreciated their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ching Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, MC., Wu, TH., Bui, TA. et al. Fabrication of highly c-axis textured ZnO thin films piezoelectric transducers by RF sputtering. J Mater Sci: Mater Electron 23, 418–424 (2012). https://doi.org/10.1007/s10854-011-0490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0490-y

Keywords

Navigation