Skip to main content
Log in

Power and gas pressure effects on properties of amorphous In–Ga–ZnO films by magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Amorphous InGaZnO thin films were deposited on quartz glass substrate at room temperature utilizing radio frequency magnetron sputtering technique. Sputtering power and oxygen flow rate effects on the physical properties of the InGaZnO films were systematically investigated. It is shown the film deposition rate and the conductivity of the InGaZnO films increased with the sputtering power. The as-grown InGaZnO films deposited at 500 W exhibited the Hall mobility of 17.7 cm2/Vs. Average optical transmittance of the InGaZnO films is greater than 80% in the visible wavelength. The extracted optical band gap of the InGaZnO films increased from 3.06 to 3.46 eV with increasing the sputtering power. The electrical properties of the InGaZnO films are greatly dependent on the O2/Ar gas flow ratio and post-growth annealing process. Increasing oxygen flow rate converted the InGaZnO films from semiconducting to semi-insulating, but the resistivity of the films was significantly reduced after being annealed in vacuum. Both the as-grown and annealed InGaZnO films show n-type electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IGZO:

InGaZnO

TFTs:

Thin film transistors

AM:

Active matrix

RF:

Radio frequency

PLD:

Pulsed laser deposition

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

BM:

Burstein-Moss

References

  1. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003)

    Article  CAS  Google Scholar 

  2. K. Hoshino, J.F. Wager, IEEE Trans. Electron Devices 31, 818 (2010)

    Article  CAS  Google Scholar 

  3. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Honoso, Appl. Phys. Lett. 90, 242114 (2007)

    Article  Google Scholar 

  4. M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin, J.S. Park, J.K. Jeong, H. Kim, Appl. Phys. Lett. 90, 212114 (2007)

    Article  Google Scholar 

  5. M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, H. Honoso, Appl Phys. Lett. 92, 133512 (2008)

    Article  Google Scholar 

  6. J. Kanicki, F.R. Libsch, J. Griffith, R. Polastre, J. Appl Phys. 69, 2339 (1991)

    Article  CAS  Google Scholar 

  7. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, Appl. Phys. Lett. 89, 112123 (2006)

    Article  Google Scholar 

  8. H.Q. Chiang, B.R. McFarlance, D. Hong, R.E. Presley, J.F. Wager, J. Non-Cryst. Solid. 354, 2826 (2008)

    Article  CAS  Google Scholar 

  9. J.K. Jeong, J.H. Jeong, H.W. Yang, J.S. Park, Y. Mo, H. Kim, Appl. Phys. Lett. 91, 113505 (2007)

    Article  Google Scholar 

  10. J.h. Lee, D.h. Kim, D.J. Yang, S.Y. Hong, K.S. Yoon, P.S. Hong, C.O. Jeong, H.S. Park, S.Y. Kim, S.K. Lim, SID Int. Symp. Digest Tech. Papers 39, 625 (2008)

    Article  CAS  Google Scholar 

  11. J.K. Jeong, J.H. Jeong, H.W. Yang, T.K. Ahn, M. Kim, K.S. Kim, B.S. Gu, H.J. Chung, J.S. Park, Y.G. Mo, J. Soc. Inf. Disp. 17, 95 (2009)

    Article  CAS  Google Scholar 

  12. T. Kamiya, H. Hosono, NPG Asia Mater. 2, 15 (2010)

    Google Scholar 

  13. J. Song, J. Park, H. Kim, Y. Heo, G.M. Kim, B.D. Choi, Appl. Phys. Lett. 90, 022106 (2007)

    Article  Google Scholar 

  14. C.H. Jung, D.J. Kim, Y.K. Kang, D.H. Yoon, Thin Solid Films 517, 4078 (2009)

    Article  CAS  Google Scholar 

  15. H. Kim, K. Park, K. Son, J. Park, W. Maeng, T. Kim, K. Lee, E. Kim, J. Lee, J. Suh, J. Seon, M. Ryu, S. Lee, K. Lee, S. Im, Appl. Phys. Lett. 97, 102103 (2010)

    Article  Google Scholar 

  16. J. Lee, D. Lee, D. Lim, K. Yang, Thin Solid Films 515, 6094 (2007)

    Article  CAS  Google Scholar 

  17. T. Kamiya, K. Nomura, M. Hirano, H. Hosono, Phys. Stat. Sol. (c) 5, 3098 (2008)

    Article  CAS  Google Scholar 

  18. D. Kurita, S. Ohta, K. Sugiura, H. Ohta, K. Koumoto, J. Appl. Phys. 100, 096105 (2006)

    Article  Google Scholar 

  19. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  20. T.S. Moss, Proc. Phys. Soc. London, Sect. B 67, 775 (1954)

    Article  Google Scholar 

  21. P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, J. Phys. D Appl. Phys. 42, 035102 (2009)

    Article  Google Scholar 

  22. S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 10904121), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. 10SRF-ROCS11) and Doctoral Fund of Ministry of Education of China (Grant No. 20090201120024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Hu, X., Liu, Z. et al. Power and gas pressure effects on properties of amorphous In–Ga–ZnO films by magnetron sputtering. J Mater Sci: Mater Electron 23, 408–412 (2012). https://doi.org/10.1007/s10854-011-0467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0467-x

Keywords

Navigation