Skip to main content
Log in

Hydrothermal synthesis and gas sensing properties of different titanate nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles and other three different morphologies of titanate nanostructures such as nanotubes, nanosheets and nanowires were successfully prepared by hydrothermal method. The structures and morphologies of the final products were characterized with field-emission scanning electron microscopy (FE-SEM). Phase analysis was carried out using X-ray diffraction (XRD). A novel formation mechanism from anatase TiO2 nanoparticles to titanate nanowires is proposed based on FE-SEM. The gas sensing properties to ethanol were also investigated. The results indicate that nanotubes, nanosheets, nanowires show much less resistance and larger response than nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.D. Garje, R.C. Aiyer, J. Mater. Sci. Mater Electron 19, 547 (2008)

    Article  CAS  Google Scholar 

  2. C.Q. Ge, C.S. Xie, S.Z. Cai, Mater. Sci. Eng. B 137, 53 (2007)

    Article  CAS  Google Scholar 

  3. Y. Wang, Y.M. Wang, J.L. Cao, F.H. Kong, H.J. Xia, J. Zhang, B.L. Zhu, S.R. Wang, S.H. Wu, Sens. Actuators B 131, 183 (2008)

    Article  Google Scholar 

  4. M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, M. Notaro, Sens. Actuators B 58, 310 (1999)

    Article  Google Scholar 

  5. I. Alessandri, E. Comini, E. Bontempi, G. Faglia, L.E. Depero, G. Sberveglieri, Sens. Actuators B 128, 312 (2007)

    Article  Google Scholar 

  6. C. Fu, T.Z. Li, J.S. Qi, J. Pan, S. Chen, C. Cheng, Chem. Phys. Lett. 494, 117 (2010)

    Article  CAS  Google Scholar 

  7. W. Zeng, T.M. Liu, D.J. Liu, Physica. B 405, 4235 (2010)

    Article  CAS  Google Scholar 

  8. C.M. Carney, S. Yoo, S.A. Akbar, Sens. Actuators B 108, 29 (2005)

    Article  Google Scholar 

  9. R. Rella, J. Spadavecchia, M.G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato, T. Tunno, Sens. Actuators B 127, 426 (2007)

    Article  Google Scholar 

  10. A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Sens. Actuators B 103, 312 (2004)

    Article  Google Scholar 

  11. J. Moon, J.A. Park, S.J. Lee, T. Zyung, I.D. Kim, Sens. Actuators B 149, 301 (2010)

    Article  Google Scholar 

  12. M.H. Seoa, M. Yuasa, T. Kida, J.S. Huh, K. Shimanoe, N. Yamazoe, Sens. Actuators 137, 513 (2009)

    Article  Google Scholar 

  13. G.S. Devi, T. Hyodo, Y. Shimizu, M. Egashira, Sens. Actuators B 87, 122 (2002)

    Article  Google Scholar 

  14. L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators B 130, 70 (2008)

    Article  Google Scholar 

  15. E. Comini, G. Sberveglieri, Mater. Today 13, 36 (2010)

    Article  CAS  Google Scholar 

  16. J.M. Li, Y.X. Yu, Q.W. Chen, J.J. Li, D.S. Xu, Cryst. Growth Des. 10, 2111 (2010)

    Article  CAS  Google Scholar 

  17. K. Das, S.K. Panda, S. Chaudhuri, J. Cryst. Growth 310, 3792 (2008)

    Article  CAS  Google Scholar 

  18. S.J. Limmer, G.Z. Cao, Adv. Mater. 15, 427 (2003)

    Article  CAS  Google Scholar 

  19. J.J. Wu, C.C. Yu, J. Phys. Chem. B 108, 3377 (2004)

    Article  CAS  Google Scholar 

  20. Y. Lei, L.D. Zhang, J.C. Fan, Chem. Phys. Lett. 338, 231 (2001)

    Article  CAS  Google Scholar 

  21. J.I. Kim, S.Y. Lee, J.C. Pyun, Curr. Appl. Phys. 9, e252 (2009)

    Article  Google Scholar 

  22. Q.J. Xiang, K.L. Lv, J.G. Yu, Appl. Catal. B Environ. 96, 557 (2010)

    Article  CAS  Google Scholar 

  23. W.Z. Wang, L. Ao, Mate. Lett. 64, 912 (2010)

    Article  CAS  Google Scholar 

  24. A. Kukovecz, M. Hodos, E. Horvath, G. Radnoczi, Z. Konya, I. Kiricsi, J. Phys. Chem. B 109, 17781 (2005)

    Article  CAS  Google Scholar 

  25. K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007)

    Article  CAS  Google Scholar 

  26. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  CAS  Google Scholar 

  27. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999)

    Article  CAS  Google Scholar 

  28. G.H. Du, Q. Chen, R.C. Chen, Z.Y. Yuan, L.M. Peng, Appl. Phys. Lett. 79, 3702 (2001)

    Article  CAS  Google Scholar 

  29. Q. Chen, G.H. Du, S. Zhang, L.M. Peng, Acta Crystallogr. B 58, 587 (2002)

    Article  CAS  Google Scholar 

  30. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Dalton Trans. 20, 3898 (2003)

    Article  Google Scholar 

  31. A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew Chen. Int. Ed. 43, 2286 (2004)

    Article  CAS  Google Scholar 

  32. X.M. Sun, Y.D. Li, Chem. Eur. J. 9, 2229 (2003)

    Article  CAS  Google Scholar 

  33. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. Aritani, J. Mater. Sci. 39, 4239 (2004)

    Article  CAS  Google Scholar 

  34. J.Q. Huang, Z. Huang, W. Guo, M.L. Wang, Y.G. Cao, M.C. Hong, Cryst. Growth Des. 8, 2444 (2008)

    Article  CAS  Google Scholar 

  35. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson Jr., J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)

    Article  CAS  Google Scholar 

  36. L.M. Dana, T. Gerry, G.B. Mark, N.A. Raftery, L.F. Ray, R.W. Eric, J. Mater. Sci. 46, 548 (2010)

    Google Scholar 

  37. D. Wu, X.N. Zhao, A.D. Li, Y.F. Chen, N.B. Ming, Chem. Mater. 18, 547 (2006)

    Article  CAS  Google Scholar 

  38. W.B. Hu, L.P. Li, G.S. Li, C.L. Tang, L. Sun, Cryst. Growth Des. 9, 3676 (2009)

    Article  CAS  Google Scholar 

  39. Z.V. Saponjic, N.M. Dimitrijevic, D.M. Tiede, A.J. Goshe, X. Zuo, L.X. Chen, A.S. Barnard, P. Zapol, L. Curtiss, T. Rajh, Adv. Mater. 17, 965 (2005)

    Article  CAS  Google Scholar 

  40. J.Q. Huang, Y.G. Cao, Q.F. Huang, H. He, Y. Liu, W. Guo, M.C. Hong, Cryst. Growth Des. 9, 3632 (2009)

    Article  CAS  Google Scholar 

  41. R.L. Penn, J.F. Banfield, Science 281, 969 (1998)

    Article  CAS  Google Scholar 

  42. C.Z. Wagner, Elektrochem 65, 581 (1961)

    CAS  Google Scholar 

  43. M.V. Speight, Acta Metall. 16, 133 (1968)

    Article  CAS  Google Scholar 

  44. H.O.K. Kirchner, Metall. Trans. 2, 2861 (1971)

    Article  Google Scholar 

  45. N.Q. Wu, J. Wang, D.N. Tafen, H. Wang, J.G. Zheng, J.P. Lewis, X.G. Liu, S.S. Leonard, A. Manivannan, J. Am. Chem. Soc. 132, 6679 (2010)

    Article  CAS  Google Scholar 

  46. Z.H. Jing, Mater. Sci. Eng. A 441, 176 (2006)

    Article  Google Scholar 

  47. W. Zeng, T.M. Liu, Z.C. Wang, Mater. Trans. 51, 243 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Research National 973Major Project of China and the Fundamental Funds for the Central Universities (CDJXS10131154), “The Key Fundamental Problem of Processing and Preparation for High Performance Magnesium Alloy”, under Grant No. 2007CB613700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianmo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Liu, T., Lv, C. et al. Hydrothermal synthesis and gas sensing properties of different titanate nanostructures. J Mater Sci: Mater Electron 23, 576–581 (2012). https://doi.org/10.1007/s10854-011-0443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0443-5

Keywords

Navigation