Skip to main content
Log in

Improvement of crystal quality and UV transparence of dielectric Ga2O3 thin films via thermal annealing in N2 atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga2O3 thin films were deposited on sapphire (0001) substrates by low-pressure metal organic chemical vapor deposition. The influence of annealing in N2 atmosphere at the temperature in the range of 800–1,000 °C was investigated by X-ray diffraction and optical transmittance spectra. With an increase of annealing temperature from 800 to 950 °C, the transformation from the initial amorphous film to polycrystalline β-Ga2O3 thin film was observed, and the transmittance was also improved remarkably. The optical band gap energy of the sample annealed at 950 °C was evaluated as ~5 eV. Whereas, after an annealing at 1,000 °C, the crystal quality became worse and the transmittance degraded. The mechanism of annealing in N2 atmosphere was discussed in view of phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Q. Chen, M.A. Khan, J.W. Yang, C.J. Sun, M.S. Shur, H. Park, Appl. Phys. Lett. 69, 794 (1996)

    Google Scholar 

  2. T. Oshima, T. Okuno, S. Fujita, Jpn. J. Appl. Phys. 46, 7217 (2007)

    Google Scholar 

  3. H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, I. Tanaka, S. Sonoda, Appl. Phys. Lett. 89, 181901 (2006)

    Google Scholar 

  4. M.W. Hong, J.R. Kwo, P.C. Tsai, Y.C. Chang, M.L. Huang, C.P. Chen, T.D. Lin, Jpn. J. Appl. Phys. 46, 3167 (2007)

    Google Scholar 

  5. K. Chung, C.H. Lee, G.C. Yi, Science 330, 655 (2010)

    Google Scholar 

  6. K. Shimamura, E.G. Villora, K. Domen, K. Yui, K. Aoki, N. Ichinose, Jpn. J. Appl. Phys. 44, L7 (2005)

  7. S. Ohira, N. Arai, Phys. Status Solidi. C 5, 3116 (2008)

    Google Scholar 

  8. E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Google Scholar 

  9. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Google Scholar 

  10. H.H. Tippins, Phys. Rev. 140, A316 (1965)

  11. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008)

    Google Scholar 

  12. Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007)

    Google Scholar 

  13. J.H. Hao, M. Cocivera, J. Phys. D Appl. Phys. 35, 433 (2002)

    Google Scholar 

  14. S.A. Lee, J.Y. Hwang, J.P. Kim, S.Y. Jeong, C.R. Cho, Appl. Phys. Lett. 89, 182906 (2006)

    Google Scholar 

  15. H.W. Kim, N.H. Kim, C. Lee, J. Mater. Sci. 39, 3461 (2004)

    Google Scholar 

  16. M. Hong, F. Ren, J.M. Kuo, W.S. Hobson, J. Kwo, J.P. Mannaerts, J.R. Lothian, Y.K. Chen, J. Vac. Sci. Technol. B 16, 1398 (1998)

    Google Scholar 

  17. H.W. Kim, N.H. Kim, J. Alloy. Compd. 389, 177 (2005)

    Google Scholar 

  18. H.W. Kim, N.H. Kim, App. Surf. Sci. 230, 301 (2004)

    Google Scholar 

  19. T. Oshima, S. Fujita, Phys. Status Solidi. C 5, 3113 (2008)

    Google Scholar 

  20. H.W. Liang, Q.J. Feng, J.C. Sun, J.Z. Zhao, J.M. Bian, L.Z. Hu, H.Q. Zhang, Y.M. Luo, G.T. Du, Semicond. Sci. Tech. 23, 025014 (2008)

    Google Scholar 

  21. J.H. Kim, K.H. Yoon, J. Mater. Sci.: Mater. Electron 20, 879 (2009)

    Google Scholar 

  22. S. Geller, J. Chem. Phys. 33, 676 (1960)

    Google Scholar 

  23. R. Roy, V.G. Hill, E.F. Osborn, J. Am. Chem. Soc. 74, 719 (1952)

    Google Scholar 

  24. J.H. Kim, P.H. Holloway, J. Vac. Sci. Technol. A 20, 928 (2002)

    Google Scholar 

  25. L.N. Cojocaru, A. Prodan, Rev. Roum. Phys. 19, 209 (1974)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61076045, 11004020, 60976010, 10804040, 60877020 and 10804014), National High Technology Research and Development Program (863) of China under Grant No. 2009AA03Z401, Scientific Research Foundation for Doctoral program of Liaoning Province of China under Grant No. 20101016. Youth Teacher Cultivation Fund by Dalian University of Technology, the Fundamental Research Funds for the Central Universities (DUT10LK01, DUT11LK43) and Doctoral Scientific Research Starting Foundation of Liaoning province (No.20081081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Liang or Guotong Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Xia, X., Liang, H. et al. Improvement of crystal quality and UV transparence of dielectric Ga2O3 thin films via thermal annealing in N2 atmosphere. J Mater Sci: Mater Electron 23, 542–545 (2012). https://doi.org/10.1007/s10854-011-0433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0433-7

Keywords

Navigation