Skip to main content
Log in

Phase, microstructure and microwave dielectric properties of Zr-doped SrLa4Ti5−xZrxO17

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of Zr+4 substitution for Ti+4 on the phase, microstructure and microwave dielectric properties of compositions in the SrLa4Ti5−xZrxO17 (0 ≤ x ≤ 0.1) series was investigated. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffractometer when sintered in the temperature range 1,450–1,580 °C for 4 h in air. The substitution of Zr+4 for Ti+4 enabled processing of highly dense ceramics with a decrease in temperature coefficient of resonant frequency (τf) from ~117 to 70 ppm/°C, dielectric constant (εr) from 60.8 to 57.3, with no significant effect on the quality factor. In the present study, optimum properties i.e. εr ~ 57.3, τf ~ 70 ppm/°C and quality factor (Q u  × f o ) ~ 9,841 GHz, were achieved for SrLa4Ti4.9Zr0.1O17. The trend of the results demonstrates that further studies with increased Zr+4 content are required to achieve ultra low loss SrLa4Ti5−xZrxO17 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric materials for wireless communications (Elsevier Publishers, Amsterdam, 2008)

    Google Scholar 

  2. W. Wersing, Curr. Opin. Solid State Mater. Sci. 1, 715 (1996)

    Article  CAS  Google Scholar 

  3. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, J. Am. Ceram. Soc. 66, 421 (1983)

    Article  CAS  Google Scholar 

  4. S. Nomura, K. Toyama, K. Tanaka, Jpn. J. Appl. Phys. 21, 1624 (1982)

    Article  Google Scholar 

  5. K.P. Surendran, M.T. Sebastian, P. Mohanan, M.V. Philip, J. Appl. Phys. 98, 094114 (2005)

    Article  Google Scholar 

  6. H.M.J. O’Bryan, J.J. Thomson, J.K. Plourde, J. Am. Ceram. Soc. 57, 450 (1974)

    Article  Google Scholar 

  7. J.K. Plourde, D.F. Linn, H.M.J. O’Bryan, J.J. Thompson, J. Am. Ceram. Soc. 58, 418 (1975)

    Article  CAS  Google Scholar 

  8. H. Tamura, Am. Ceram. Soc. Bull. 73, 92 (1994)

    CAS  Google Scholar 

  9. T. Joseph, P.S. Anjana, S. Letourneau, R. Ubic, S.V. Smaalen, M.T. Sebastian, Mater. Chem. Phys. 121, 1–2–1–77 (2010)

    Article  Google Scholar 

  10. I.N. Jawahar, N. Santha, M.T. Sebastian, P. Mohanan, J. Mater. Res. 17, 3084 (2002)

    Article  CAS  Google Scholar 

  11. K. Demšar, S.D. Škapin, A. Medena, D. Suvorov, Acta Chim. Slov. 55, 966 (2008)

    Google Scholar 

  12. N.S. Neirman, J. Matt. Sci. 23, 3937 (1988)

    Google Scholar 

  13. A. Outzourhit, M.A. El Raghni, M.L. Hafid, F. Bensamka, A. Outzourhit, J. Alloys Compd. 340, 214 (2002)

    Article  CAS  Google Scholar 

  14. Y.C. Chen, W.C. Lee, K.C. Chen, Mater. Chem. Phys. 118, 161 (2009)

    Article  CAS  Google Scholar 

  15. G. Xufang, Q. Tai, J. Rare Earths 28(3), 411 (2010)

    Article  Google Scholar 

  16. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  17. A. Manan, Y. Iqbal, J. Mater. Sci. Mater. Electron. (2011). doi:10.1007/s10854-011-0372-3

  18. D. Zhou, H. Wang, X. Yao, L. Pang, J. Am. Ceram. Soc. 91, 10–3419 (2008)

    Google Scholar 

  19. D. Zhou, C.A. Randall, H. Wang, L. Pang, X. Yao, J. Am. Ceram. Soc. 92, 12–2931 (2009)

    Google Scholar 

  20. Y. Iqbal, I.M. Reaney, Ferroelectrics 302, 259 (2004)

    Article  CAS  Google Scholar 

  21. P.V. Bijumon, M.T. Sebastian, J. Mater. Res. 19, 2922 (2004)

    Article  CAS  Google Scholar 

  22. J. Kato, H. Kagata, K. Nishimoto, Jpn. J. Appl. Phys. 31, 3144 (1992)

    Article  CAS  Google Scholar 

  23. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  24. A. Feteira, D.C. Sinclair, M.T. Lanagan, J. Appl. Phys. 101(6), 7 (2007)

    Article  Google Scholar 

  25. D. Zhou, H. Wang, X. Yao, L. Pang, Mater. Chem. Phys. 110, 2–3–2–212 (2008)

    Google Scholar 

  26. Y. Li, X.M. Chen, N. Qin, Y.W. Zeng, J. Am. Ceram. Soc. 88, 2–481 (2005)

    Google Scholar 

  27. E.S. Kim, Y.H. Kim, B.S. Chun, Y.T. Kim, K.H. Yoon, Mater. Chem. Phys. 79, 233 (2003)

    Article  Google Scholar 

  28. W.S. Kim, E.S. Kim, K.Y. Yoon, J. Am. Ceram. Soc. 82, 8–2111 (1999)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Higher Education Commission of Pakistan (NRPU 20-569, IRSIP and Development of Materials Connection Centre, Pak-US Project ID 131) and electroceramics group in facilitating the authors at the Department of Material Science & Engineering Materials, University of Sheffield (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaseen Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, Y., Manan, A. Phase, microstructure and microwave dielectric properties of Zr-doped SrLa4Ti5−xZrxO17 . J Mater Sci: Mater Electron 23, 536–541 (2012). https://doi.org/10.1007/s10854-011-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0432-8

Keywords

Navigation