Skip to main content
Log in

Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the SiO2/metal. We systematically varied the value of the interfacial solubility, Ce over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, 1026–1027 atoms/m3, are within the realm of possibility and have been reported in the context of fabricating Cu-SiO2 resistive switching elements for memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.S. Achanta, W.N. Gill, J.L. Plawsky, G. Haase, J. Vac. Sci. Technol. 24(3), 1417 (2006)

    Article  CAS  Google Scholar 

  2. Y. Li, I. Ciofi, L. Carbonell, N. Heylen, J. Van Aelst, M.R. Baklanov, G. Groeseneken, K. Maex, Z. Tőkei, J. Appl. Phys. 104, 034113 (2008)

    Article  Google Scholar 

  3. D. Oshida, T. Takewaki, M. Iguchi, T. Taiji, T. Morita, Y. Tsuchiya, S. Yokogawa, H. Kunishima, H. Aizawa, N. Okada, in Proceedings of the IEEE International Interconnect Technical Conference. (2008), p. 222

  4. R.S. Achanta, W.N. Gill, J.L. Plawsky, Appl. Phys. Lett. 91, 234106 (2007)

    Article  Google Scholar 

  5. R.S. Achanta, W.N. Gill, J.L. Plawsky, J. Appl. Phys. 106, 074906 (2009)

    Article  Google Scholar 

  6. R.S. Achanta, W.N. Gill, J.L. Plawsky, J. Micro/Nanolithography, MEMS, and MOEMS 9, 041104 (2010)

    Article  Google Scholar 

  7. D.J. Di Maria, J.W. Stasik, J. Appl. Phys. 65, 2342 (1989)

    Article  CAS  Google Scholar 

  8. S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, C.H. Tung, J. Apply. Phys. 98, 12301 (2005)

    Article  Google Scholar 

  9. J.M. Atkin, E. Cartier, T.M. Shaw, J.R. Lloyd, R.B. Laibowitz, T.F. Heinz, Microelectron. Engg. 86, 1891 (2009)

    Article  CAS  Google Scholar 

  10. J.R. Lloyd, C.E. Murray, S. Ponoth, S. Cohen, E.G. Liniger, Microlectron. Reliab. 46, 1643 (2006)

    Article  CAS  Google Scholar 

  11. R. Gonella, Microlectron. Engg. 55, 245 (2001)

    Article  CAS  Google Scholar 

  12. A.L.S. Loke, J.T. Wetzel, P.H. Townsend, T. Tanabe, R.N. Vrtis, M.P. Zussman, D.K. Kumar, C. Ryu, S.S. Wong, IEEE Trans. Electron. Devices 46, 2178 (1999)

    Article  CAS  Google Scholar 

  13. K.L. Jensen, J. Vac. Sci. Technol. B 21, 1528 (2003)

    Article  CAS  Google Scholar 

  14. I.S. Savinov, Semiconductors 39, 591 (2005)

    Article  CAS  Google Scholar 

  15. M.V. Fischetti, Phys. Rev. B 31, 2099 (1985)

    Article  CAS  Google Scholar 

  16. G.S. Haase, E.T. Ogawa, J.W. McPherson, J. Lloyd (ed.), in Proceedings, 43rd Annual Reliability Physics Symposium (IEEE, New York, 2005), p. 466

  17. J.W. McPherson, H.C. Mogul, J. Appl. Phys. 84, 1513 (1998)

    Article  CAS  Google Scholar 

  18. G.S. Haase, J. Appl. Phys. 105, 044908 (2009)

    Article  Google Scholar 

  19. F. Chen et al., in J. Lloyd (ed.), in Proceedings, 43rd Annual Reliability Physics Symposium, IEEE International (New York, April 17–21, 2005), p. 501

  20. N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Maegawa, K. Kubota, C. Grass (ed.), in Proceedings, 44th Annual Reliability Physics Symposium, IEEE International (New York, March 26–30, 2006), p. 484

  21. V.P. Romanov, Phys. Stat. Sol. A 70, 525 (1982)

    Article  CAS  Google Scholar 

  22. V.P. Romanov, Yu.A. Chaplygin, Phys. Stat. Sol. A 53, 493 (1979)

    Article  CAS  Google Scholar 

  23. Y. Shacham-Diamand, A. Dedhla, D. Hofstetter, W.G. Oldham, J. Electrochem. Soc. 140, 2427 (1993)

    Article  CAS  Google Scholar 

  24. S.-S. Hwang, S.-Y. Jung, Y.-C. Joo, J. Appl. Phys. 101, 074501 (2007)

    Article  Google Scholar 

  25. S.P. Thermaden, S.K. Bhagat, T.L. Alford, Y. Sakaguchi, M.N. Kozicki, M. Mitova, Thin Solid Films 518, 3292 (2010)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the Semiconductor Research Corporation and NYSTAR for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel. L. Plawsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plawsky, J.L., Gill, W.N. & Achanta, R.S. Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure. J Mater Sci: Mater Electron 23, 48–55 (2012). https://doi.org/10.1007/s10854-011-0406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0406-x

Keywords

Navigation