Skip to main content
Log in

Influence of post-deposition annealing in oxygen ambient on metal–organic decomposed CeO2 film spin coated on 4H-SiC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Post-deposition annealing (PDA) was performed in oxygen ambient at different temperatures (600, 800, 1,000 and 1,150 °C) onto metal–organic decomposition (MOD) prepared CeO2 film spin coated on n-type 4H-SiC substrate. Effects of PDA onto the physical and electrical characteristics of MOD-derived CeO2 were investigated. Four orientations [(111), (200), (220), and (311)] of CeO2 peaks were revealed by X-ray diffraction analysis in all of the samples with a preferred orientation in (200) direction. However, α-Ce2O3 and cerium silicate (Ce2Si2O7) interfacial layers emerged at 1,150 °C. As annealing temperature increased, grain size of films was increased but microstrains were decreased. Electrical results indicated that negative effective oxide charge and slow trap density were decreased as temperature increased. The lowest interface trap density was perceived by sample annealed at 1,000 °C. However, the highest electric field was obtained by sample annealed at 1,150 °C. Reasons that contributed to this observation were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Wesch, Silicon Carbide: Synthesis and Processing (Nucl. Instrum. Methods Phys. Res. Sect. B, 305–321 (1996)

  2. Z. Luo, T. Chen, D.C. Sheridan, J.D. Cressler, in SiC Power Materials, ed. by Z.C. Feng (Springer, Berlin, 2004)

    Google Scholar 

  3. W.J. Choyke, H. Matsunami, G. Pensl (eds.), Silicon Carbide-Recent Major Advances (Springer, Berlin, 2004), pp. 375–409

    Google Scholar 

  4. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials GaN, AlN, lnN, BN, SiC, SiGe (Wiley, New York, 2001)

    Google Scholar 

  5. K. Yamashita, K. Egashira, K. Hashimoto, K. Takahashi, O. Kusumoto, K. Utsunomiya, M. Hayashi, M. Uchida, C. Kudo, M. Kitabatake, S. Hashimoto, Mater. Sci. Forum 600–603, 1115 (2009)

    Article  Google Scholar 

  6. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M.D. Ventra, R.K. Chanana, S.T. Pantelides, L.C. Feldman, R.A. Weller, Appl. Phys. Lett. 77, 3601 (2000)

    Article  CAS  Google Scholar 

  7. P.T. Lai, J.P. Xu, C.L. Chan, IEEE Electron Device Lett. 23, 410 (2002)

    Article  CAS  Google Scholar 

  8. K.Y. Cheong, W. Bahng, N.-K. Kim, Phys. Lett. A 372, 529 (2008)

    Article  CAS  Google Scholar 

  9. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Device Lett. 22, 176 (2001)

    Article  CAS  Google Scholar 

  10. K. McDonald, L.C. Feldman, R.A. Weller, G.Y. Chung, C.C. Tin, J.R. Williams, J. Appl. Phys. 93, 2257 (2003)

    Article  CAS  Google Scholar 

  11. J. Rozen, S. Dhar, S.K. Dixit, V.V. Afanas’ev, F.O. Roberts, H.L. Dang, S.W. Wang, S.T. Pantelides, J.R. Williams, L.C. Feldman, J. Appl. Phys. 103, 124513 (2008)

    Article  Google Scholar 

  12. J. Rozen, S. Dhar, M.E. Zvanut, J.R. Williams, L.C. Feldman, J. Appl. Phys. 105, 124506 (2009)

    Article  Google Scholar 

  13. A.F. Basile, J. Rozen, X.D. Chen, S. Dhar, J.R. Williams, L.C. Feldman, P.M. Mooney, Mater. Sci. Forum 645–648, 499 (2010)

    Article  Google Scholar 

  14. F. Allerstam, H.O. Olafsson, G. Gudjonsson, D. Dochev, E.O. Sveinbjornsson, T. Rodle, R. Jos, J. Appl. Phys. 101, 124502 (2007)

    Article  Google Scholar 

  15. R. Palmieri, C. Radtke, H. Boudinov, E. F. da Silva Jr., Appl. Phys. Lett. 95, 113504 (2009)

    Article  Google Scholar 

  16. Y. Nanen, B. Zippelius, S. Beijakowa, L. Trapaidze, M. Krieger, T. Kimoto, G. Pensl, Mater. Sci. Forum 645–648, 487 (2010)

    Article  Google Scholar 

  17. D. Okamoto, H. Yano, T. Hatayama, T. Fuyuki, Mater. Sci. Forum 645–648, 495 (2010)

    Article  Google Scholar 

  18. Y. Iwasaki, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, Mater. Sci. Forum 645–648, 503 (2010)

    Article  Google Scholar 

  19. Y. Kagei, T. Kirino, Y. Watanabe, S.H. Mitani, Y. Nakano, T. Nakamura, T. Hosoi, T. Shimura, H. Watanabe, Mater. Sci. Forum 645–648, 507 (2010)

    Article  Google Scholar 

  20. D. Okamoto, H. Yano, T. Hatayama, T. Fuyuki, Appl. Phys. Lett. 96, 203508 (2010)

    Article  Google Scholar 

  21. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010)

    Article  CAS  Google Scholar 

  22. L.A. Lipkin, J.W. Palmour, IEEE Trans. Electron Devices 46, 525 (1999)

    Article  CAS  Google Scholar 

  23. C.M. Tanner, M.F. Toney, K. Lu, H.-O. Blom, M.S. Mathur, M.A. Tafesse, J.P. Chang, J. Appl. Phys. 102, 104112 (2007)

    Article  Google Scholar 

  24. C.M. Tanner, Y.-C. Perng, C. Frewin, S.E. Saddow, J.P. Chang, Appl. Phys. Lett. 91, 203510 (2007)

    Article  Google Scholar 

  25. S.-W. Huang, J.-G. Hwu, IEEE Trans. Electron Devices 51, 1877 (2004)

    Article  CAS  Google Scholar 

  26. K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, N.-K. Kim, Appl. Phys. Lett. 90, 162113 (2007)

    Article  Google Scholar 

  27. H.R. Lazar, V. Misra, R.S. Johnson, G. Lucovsky, Appl. Phys. Lett. 79, 973 (2001)

    Article  CAS  Google Scholar 

  28. K.Y. Cheong, J.H. Moon, D.I. Eom, H.J. Kim, W. Bahng, N.-K. Kim, Electrochem. Solid-State Lett. 10, H69 (2006)

    Article  Google Scholar 

  29. S. Hino, T. Hatayama, J. Kato, N. Miura, T. Oomori, E. Tokumitsu, Mater. Sci. Forum 600–603, 683 (2009)

    Article  Google Scholar 

  30. M. Wolborski, M. Rooth, M. Bakowski, A. Hallen, J. Appl. Phys. 101, 124105 (2007)

    Article  Google Scholar 

  31. S.S. Hullavarad, D.E. Pugel, E.B. Jones, R.D. Vispute, T. Venkatesan, J. Electron. Mater. 36, 648 (2007)

    Article  CAS  Google Scholar 

  32. K.J. Wang, K.Y. Cheong, Appl. Surf. Sci. 254, 1981 (2007)

    Article  Google Scholar 

  33. V.V. Afanas’ev, A. Stesmans, F. Chen, S.A. Campbell, R. Smith, Appl. Phys. Lett. 82, 922 (2003)

    Article  Google Scholar 

  34. K.Y. Cheong, J.H. Moon, H.J. Kim, W. Bahng, N.-K. Kim, J. Appl. Phys. 103, 084113 (2008)

    Article  Google Scholar 

  35. K.Y. Cheong, J.H. Moon, T.J. Park, J.H. Kim, C.S. Hwang, H.J. Kim, W. Bahng, N.-K. Kim, IEEE Trans. Electron Devices 54, 3409 (2007)

    Article  CAS  Google Scholar 

  36. R. Mahapatra, A.K. Chakraborty, A.B. Horsfall, S. Chattopadhyay, N.G. Wright, K.S. Coleman, J. Appl. Phys. 102, 024105 (2007)

    Article  Google Scholar 

  37. P. Zhao, Rusli, B. K. Lok, F. K. Lai, C. C. Tin, J. H. Zhao, R. M. Yar, Microelectron. Eng. 83, 58 (2006)

  38. M. Wolborski, D. Rosen, A. Hallen, M. Bakowski, Thin Solid Films 515, 456 (2006)

    Article  CAS  Google Scholar 

  39. J.H. Moon, D.I. Eom, S.Y. No, H.K. Song, J.H. Yim, H.J. Na, J.B. Lee, H.J. Kim, Mater. Sci. Forum 527–529, 1083 (2006)

    Article  Google Scholar 

  40. H.J. Quah, W.F. Lim, S.C. Wimbush, Z. Lockman, K.Y. Cheong, Electrochem. Solid-State Lett. 13, H396 (2010)

    Article  CAS  Google Scholar 

  41. A. Fissel, M. Czernohorsky, H.J. Osten, Superlattice Microstruct. 40, 551 (2006)

    Article  CAS  Google Scholar 

  42. W.F. Lim, K.Y. Cheong, Z. Lockman, J. All. Compd. 497, 195 (2010)

    Article  CAS  Google Scholar 

  43. W.F. Lim, K.Y. Cheong, Z. Lockman, F.A. Jasni, H.J. Quah, Mater. Sci. Forum 645–648, 837 (2010)

    Article  Google Scholar 

  44. W. F. Lim, K. Y. Cheong, Z. Lockman, Appl. Phys. A (2011) doi:10.1007/s00339-010-6039-8

  45. R. Esteve, S.A. Reshanov, S. Savage, M. Bakowski, W. Kaplan, S. Persson, A. Schoner, C.-M. Zetterling, J. Electrochem. Soc. 158, H496 (2011)

    Article  CAS  Google Scholar 

  46. A. Walkenhorst, M. Schmitt, H. Adrian, K. Petersen, Appl. Phys. Lett. 64, 1871 (1994)

    Article  CAS  Google Scholar 

  47. N.V. Skorodumova, S.I. Simak, B.I. Lundqvost, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 89, 166601 (2002)

    Article  CAS  Google Scholar 

  48. T. Yamamoto, H. Momida, T. Hamada, T. Uda, T. Ohno, Thin Solid Films 486, 136 (2005)

    Article  CAS  Google Scholar 

  49. 49. L. Saraf, V. Shuttanandan, C. M. Wang, Y. W. Zhang, O. Marina, S. Thevuthasan, Proc. 3rd IEEE Conference on Nanotechnology 2, 477 (2003)

  50. J.H. Yoo, S.W. Nan, S.K. Kang, Y.H. Jeong, D.H. Ko, J.H. Ku, H.J. Lee, Microelectron. Eng. 56, 187 (2001)

    Article  CAS  Google Scholar 

  51. H. Fukuda, M. Miura, S. Sakuma, S. Nomura, Jpn. J. Appl. Phys. 37, 4158 (1998)

    Article  CAS  Google Scholar 

  52. R. Barnes, D. Starodub, T. Gustafsson, E. Garfunkel, J. Appl. Phys. 100, 044103 (2006)

    Article  Google Scholar 

  53. H.J. Quah, K.Y. Cheong, Z. Hassan, Z. Lockman, F.A. Jasni, W.F. Lim, J. Electrochem. Soc. 157, H6 (2010)

    Article  CAS  Google Scholar 

  54. H. Wong, B. Sen, V. Filip, M.C. Poon, Thin Solid Films 504, 192 (2006)

    Article  CAS  Google Scholar 

  55. T. Inoue, Y. Yamamoto, M. Satoh, Thin Solid Films 343–344, 594 (1999)

    Article  Google Scholar 

  56. S. Kanakaraju, S. Mohan, A.K. Sood, Thin Solid Films 305, 191 (1997)

    Article  CAS  Google Scholar 

  57. J.F. Kang, G.C. Xiong, G.J. Lian, Y.Y. Wang, R.Q. Han, Solid State Comm. 108, 225 (1998)

    Article  CAS  Google Scholar 

  58. S.Y. Wang, Z.P. Qiao, W. Wang, Y. Qian, J. All. Compd. 305, 121 (2000)

    Article  CAS  Google Scholar 

  59. S. Wang, W. Wang, Q. Liu, M. Zhang, Y. Qian, Solid State Ion. 133, 211 (2000)

    Article  CAS  Google Scholar 

  60. L. Kim, J. Kim, D. Jung, C.Y. Park, C.W. Yang, Y. Roh, Thin Solid Films 360, 154 (2000)

    Article  CAS  Google Scholar 

  61. J.F. Kang, X.Y. Liu, G.J. Lian, Z.H. Zhang, G.C. Xiong, X.D. Guan, R.Q. Han, Y.Y. Wang, Microelectron. Eng. 56, 191 (2001)

    Article  CAS  Google Scholar 

  62. B. Hirschauer, G. Chiaia, M. Gothelid, U.O. Karlson, Thin Solid Films 348, 3 (1999)

    Article  CAS  Google Scholar 

  63. R.P. Wang, S.H. Pan, Y.L. Zhou, G.W. Zhou, N.N. Liu, K. Xie, H.B. Lu, J. Cryst. Growth 200, 205 (1999)

    Google Scholar 

  64. D.A. Kukuruznyak, S.A. Bulkley, K.A. Omland, F.S. Ohuchi, M.C. Gregg, Thin Solid Films 385, 89 (2001)

    Article  CAS  Google Scholar 

  65. H. J. Quah, W. F. Lim, K. Y. Cheong, Z. Hassan, Z. Lockman, J. Cryst. Growth (2011, in press)

  66. M.F. Al-Kuhaili, Opt. Mater. 27, 383 (2004)

    Article  CAS  Google Scholar 

  67. J. Pelleg, E. Elish, D. Mogilyanski, Metal. Mater. Trans. A 36, 3187 (2005)

    Article  Google Scholar 

  68. S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Q. Zhang, J. Metastable Nanocryst. Mater. 23, 175 (2005)

    Article  CAS  Google Scholar 

  69. H.J. Quah, K.Y. Cheong, Z. Hassan, Z. Lockman, Electrochem. Solid-State Lett. 13, H116 (2010)

    Article  CAS  Google Scholar 

  70. S.P. Sanyal, R.K. Singh, Phonons in Condensed Materials (Allied Publishers, India, 2004), pp. 290–296

    Google Scholar 

  71. G.I.N. Waterhouse, J.B. Metson, H. Idriss, D.X.S. Waterhouse, Chem. Mater. 20, 1883 (2008)

    Article  Google Scholar 

  72. L. Triguero, S.D. Carolis, M. Baudin, M. Wojcik, K. Hermansson, M.A. Nygren, L.G.M. Petterson, R. Soc. Chem. 114, 351 (1999)

    CAS  Google Scholar 

  73. I.M. Sero, R.T. Zaera, J. Gonzalez, V.M. Sanjose, J. Cryst. Growth 262, 19 (2004)

    Article  Google Scholar 

  74. W.D. Tong, J.Y. Chen, X.D. Li, J.M. Feng, Y. Cao, Z.J. Yang, X.D. Zhang, J. Mater. Sci. 31, 3739 (1996)

    Article  CAS  Google Scholar 

  75. Y.Y. Li, D.T. Zhang, W. Xia, Y. Long, W. Zhang, J. Mater. Sci. Lett. 21, 537 (2002)

    Article  CAS  Google Scholar 

  76. V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008)

    Article  CAS  Google Scholar 

  77. M. Wei, K.L. Choy, J. Cryst. Growth 284, 464 (2005)

    Article  CAS  Google Scholar 

  78. I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, J. Vac. Sci. Technol. A 21, S117 (2003)

    Article  CAS  Google Scholar 

  79. N. Izu, W. Shin, I. Matsubara, N. Murayama, Sens. Actuat. B 94, 222 (2003)

    Article  Google Scholar 

  80. S. Deshpande, S. Patil, S.V.N.T. Kuchibhatla, S. Seal, Appl. Phys. Lett. 87, 113113 (2005)

    Article  Google Scholar 

  81. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, London, 1982), pp. 427-428, 492

  82. P. Friedrichs, E.P. Burte, R. Schorner, J. Appl. Phys. 79, 7814 (1996)

    Article  CAS  Google Scholar 

  83. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd edn. (Wiley, New York, 1998), pp. 337–419

  84. J. Robertson, Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides (MRS Bulletin, 2002), pp. 217–221

  85. M. Lemberger, A. Paskaleva, S. Zurcher, A.J. Bauer, L. Frey, H. Ryssel, Microelectron. Eng. 72, 315 (2004)

    Article  CAS  Google Scholar 

  86. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  CAS  Google Scholar 

  87. H. Ahn, H.-W. Chen, D. Landheer, X. Wu, L.J. Chou, T.-S. Chao, Thin Solid Films 455–456, 318 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (W. F. Lim) would like to acknowledge financial support given by The USM Vice Chancellor’s Award, USM-RU-PRGS (8043001), and Malaysia Toray Science Foundation (MTSF) grant (6050205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Yew Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, W.F., Cheong, K.Y. Influence of post-deposition annealing in oxygen ambient on metal–organic decomposed CeO2 film spin coated on 4H-SiC. J Mater Sci: Mater Electron 23, 257–266 (2012). https://doi.org/10.1007/s10854-011-0399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0399-5

Keywords

Navigation