Skip to main content
Log in

Preparation of highly conductive adhesives by in situ generated and sintered silver nanoparticles during curing process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The lower resistivity (7.5 × 10−5 Ω cm) of nano-electrically conductive adhesives (nano-ECAs) with silver flakes and in situ formed and sintered silver nanoparticles was developed. At room temperature,the silver nanoparticles (Ag NPs) could not be generated in ECAs due to no reaction between silver nitrate and N,N-dimethyl-4-aminobenzaldehyde (DABA). However, during curing process, Ag NPs were immediately generated through reducing silver nitrate by DABA in absence of stabilizing agents. At the same time, the increased viscosity of epoxy due to the curing could prevent the agglomerates of Ag NPs. Morphology studies showed that most Ag NPs have been attached onto the surfaces of silver flakes due to the good affinity between them, resulting in more effectively interconnecting with silver flakes by the sintered Ag NPs. Thus, the lower bulk resistivity was obtained. On the other hand, DABA, containing a tertiary amine, can stabilize contact resistance of nano-ECAs by effectively preventing galvanic corrosion at the interface between nano-ECAs and Sn surfaces due to the fact that amines can strongly bond to a Sn surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. M. Inoue, H. Muta, T. Maekawa et al., J. Electron. Mater. 38, 430 (2009)

    Article  CAS  Google Scholar 

  2. R.W. Zhang, K.S. Moon, W. Lin et al., J. Mater. Chem. 20, 2018 (2010)

    Article  CAS  Google Scholar 

  3. Y. Oh, K.Y. Chun, E. Lee et al., J. Mater. Chem. 20, 3579 (2010)

    Article  CAS  Google Scholar 

  4. H.J. Jiang, K.S. Moon, Y. Li et al., Chem. Mater. 18, 2969 (2006)

    Article  CAS  Google Scholar 

  5. D. Wakuda, K.S. Kim, K. Suganuma, Scr. Mater. 59, 649 (2008)

    Article  CAS  Google Scholar 

  6. J.G. Bai, T.G. Lei, J.N. Calata et al., J. Mater. Res. 22, 3494 (2007)

    Article  CAS  Google Scholar 

  7. H.J. Jiang, K.S. Moon, J.X. Lu et al., J. Electron. Mater. 34, 1432 (2005)

    Article  CAS  Google Scholar 

  8. D.I. Tee, M. Mariatti, A. Azizan et al., Compos. Sci. Technol. 67, 2584 (2007)

    Article  CAS  Google Scholar 

  9. M. Zhang, M.Y. Efremov, F. Schiettekatte et al., Phys. Rev. B 62, 10548 (2000)

    Article  CAS  Google Scholar 

  10. A.D. Albert, M.F. Becker, J.W. Keto et al., Acta Mater. 56, 1820 (2008)

    Article  CAS  Google Scholar 

  11. Z. Zhang, G.Q. Lu, IEEE Trans. Electron. Pack. Manufact. 25, 279 (2002)

    Article  CAS  Google Scholar 

  12. K.S. Chou, K.C. Huang, H.H. Lee, Nanotechnology 16, 779 (2005)

    Article  CAS  Google Scholar 

  13. P. Zeng, S. Zajac, P.C. Clapp et al., Mater. Sci. Eng. A Struct. 252, 301 (1998)

    Article  Google Scholar 

  14. Y.G. Sun, Y.N. Xia, Science 298, 2176 (2002)

    Article  CAS  Google Scholar 

  15. D. Kim, S. Jeong, J. Moon, Nanotechnology 17, 4019 (2006)

    Article  CAS  Google Scholar 

  16. M.N. Nadagouda, R.S. Varma, Cryst. Growth Des. 8, 291 (2008)

    Article  CAS  Google Scholar 

  17. C.C. Luo, Y.H. Zhang, X.W. Zeng et al., J. Colloid Interface Sci. 288, 444 (2005)

    Article  CAS  Google Scholar 

  18. M. Yamamoto, Y. Kashiwagi, M. Nakamoto, Langmuir 22, 8581 (2006)

    Article  CAS  Google Scholar 

  19. M. Yamamoto, M. Nakamoto, J. Mater. Chem. 13, 2064 (2003)

    Article  CAS  Google Scholar 

  20. M. Chen, Y.G. Feng, X. Wang et al., Langmuir 23, 5296 (2007)

    Article  CAS  Google Scholar 

  21. Y.G. Sun, B. Mayers, T. Herricks et al., Nano Lett. 3, 955 (2003)

    Article  CAS  Google Scholar 

  22. D.S. Seo, S.H. Park, J.K. Lee, Curr. Appl. Phys. 9, S72 (2009)

    Article  Google Scholar 

  23. A. Kamyshny, M. Ben-Moshe, S. Aviezer et al., Macromol. Rapid Commun. 26, 281 (2005)

    Article  CAS  Google Scholar 

  24. K. Cheng, M.H. Yang, W.W.W. Chiu et al., Macromol. Rapid Commun. 26, 247 (2005)

    Article  CAS  Google Scholar 

  25. J. Perelaer, B.J. de Gans, U.S. Schubert, Adv. Mater. 18, 2101 (2006)

    Article  CAS  Google Scholar 

  26. I. Reinhold, C.E. Hendriks, R. Eckardt et al., J. Mater. Chem. 19, 3384 (2009)

    Article  CAS  Google Scholar 

  27. Y.Q. Fu, C. Shearwood, B. Xu et al., Nanotechnology 21, 115707 (2010)

    Article  CAS  Google Scholar 

  28. S.H. Ko, H. Pan, C.P. Grigoropoulos et al., Nanotechnology 18, 345202 (2007)

    Article  Google Scholar 

  29. M.L. Allen, M. Aronniemi, T. Mattila et al., Nanotechnology 19, 175201 (2008)

    Article  Google Scholar 

  30. D. Wakuda, M. Hatamura, K. Suganuma, Chem. Phys. Lett. 441, 305 (2007)

    Article  CAS  Google Scholar 

  31. H.H. Lee, K.S. Chou, Z.W. Shih, Int. J. Adhes. Adhes. 25, 437 (2005)

    Article  CAS  Google Scholar 

  32. S. Pothukuchi, Y. Li, C.P. Wong, J. Appl. Polym. Sci. 93, 1531 (2004)

    Article  CAS  Google Scholar 

  33. J.X. Lu, K.S. Moon, J.W. Xu et al., J. Mater. Chem. 16, 1543 (2006)

    Article  CAS  Google Scholar 

  34. K.S. Moon, S. Liong, H.Y. Li et al., J. Electron. Mater. 33, 1381 (2004)

    Article  CAS  Google Scholar 

  35. H.Y. Li, K.S. Moon, C.P. Wong, J. Electron. Mater. 33, 106 (2004)

    Article  CAS  Google Scholar 

  36. Y.G. Sun, Y.D. Yin, B.T. Mayers et al., Chem. Mater. 14, 4736 (2002)

    Article  CAS  Google Scholar 

  37. Y. Gao, P. Jiang, L. Song et al., J. Phys. D Appl. Phys. 38, 1061 (2005)

    Article  CAS  Google Scholar 

  38. Y. Xia, Y.J. Xiong, B. Lim et al., Angew. Chem. Int. Ed. 48, 60 (2009)

    Article  CAS  Google Scholar 

  39. G. Carotenuto, L. Nicolais, B. Martorana et al., in Metal-Polymer Nanocomposite Synthesis: Novel ex situ and in situ Approaches, ed. by L. Nicolais, G. Carotenuto (Wiley, NJ, 2005), p. 176

    Google Scholar 

  40. J.D. Rancourt, L.T. Taylor, Macromolecules 20, 790 (1987)

    Article  CAS  Google Scholar 

  41. T. Sawada, S. Ando, Chem. Mater. 10, 3368 (1998)

    Article  CAS  Google Scholar 

  42. B. Bittmann, F. Haupert, A.K. Schlarb, Ultrason. Sonochem. 18, 120 (2011)

    Article  CAS  Google Scholar 

  43. M. Kurimoto, H. Okubo, K. Kato et al., IEEE Trans. Dielect. El. In. 17, 1268 (2010)

    Article  CAS  Google Scholar 

  44. D.P. Chen, X.L. Qiao, X.L. Qiu et al., J. Mater. Sci.: Mater. Electron. 21, 486 (2010)

    Article  CAS  Google Scholar 

  45. Y. Oh, D. Suh, Y. Kim et al., Nanotechnology 19, 495602 (2008)

    Article  Google Scholar 

  46. Y. Li, K.S. Moon, A. Whitman et al., IEEE Trans. Comp. Pack. Technol. 29, 758 (2006)

    Article  CAS  Google Scholar 

  47. H. Gao, L. Liu, Y.F. Luo, et al., J. Macromol. Sci. B: Phys. accepted, (2011)

  48. Y. Li, C.P. Wong, Mater. Sci. Eng. R 51, 1 (2006)

    Article  Google Scholar 

  49. D.Q. Lu, Q.K. Tong, C.P. Wong, IEEE Trans. Electron. Pack. Manufact. 22, 228 (1999)

    Article  CAS  Google Scholar 

  50. S.S. Kim, K.S. Kim, S.J. Kim et al., 50th Electronic Materials Conference (Santa Barbara, CA, 2008)

    Google Scholar 

  51. D.Q. Lu, C.P. Wong, Int. J. Adhes. Adhes. 20, 189 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Natural Science Foundation of China (contract grant numbers: 50608034 and 50873036) and “the Fundamental Research Funds for the Central Universities, SCUT” (2009ZM0306) for the financial support, and the College of Material Science and Engineering of South China University of Technology for the group in undertaking the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Liu, L., Liu, K. et al. Preparation of highly conductive adhesives by in situ generated and sintered silver nanoparticles during curing process. J Mater Sci: Mater Electron 23, 22–30 (2012). https://doi.org/10.1007/s10854-011-0388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0388-8

Keywords

Navigation