Journal of Materials Science: Materials in Electronics

, Volume 22, Issue 9, pp 1415–1419 | Cite as

Effect of annealing temperature on electrical and nano-structural properties of sol–gel derived ZnO thin films

Article

Abstract

Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol–gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 °C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 °C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I–V) and capacitance versus voltage (C–V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tanδ) were increased with increase of annealing temperature.

References

  1. 1.
    K. Yoshino, T. Hata, T. Kakeno, H. Komaki, M. Yoneta, Y. Akaki, T. Ikari, Phys. Status Solidi (c) 2, 626 (2003)CrossRefGoogle Scholar
  2. 2.
    V. Musat, E. Fortunato, S. Petrescu, A.M. Botelho do Rego, Phys Status Solidi (a) 205, 2075 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Xue, J. Zhang, C. Yang, T. Wang, J. Lumin. 128, 685 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Li, Z. Du, H. Yu, T. Wang, Thin Solid Films 517, 5931 (2009)CrossRefGoogle Scholar
  5. 5.
    P. Bhattacharyya, P.K. Basu, B. Mondal, H. Saha, Microelectron. Reliab. 48, 1772 (2008)CrossRefGoogle Scholar
  6. 6.
    E. Chikoidze, M. Nolan, M. Modreanu, V. Sallet, P. Galtier, Thin Solid Films 516, 8146 (2008)CrossRefGoogle Scholar
  7. 7.
    A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, J. Sol-Gel. Sci. Technol. 52, 348 (2009)CrossRefGoogle Scholar
  8. 8.
    U.N. Maiti, P.K. Ghosh, S.F. Ahmed, M.K. Mitra, K.K. Chattopadhyay, J. Sol-Gel Sci. Technol. 41, 87 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Kaur, A.V. Singh, R.M. Mehra, Physica Status Solidi (a) 202, 1053 (2005)CrossRefGoogle Scholar
  10. 10.
    X.-H. Wang, J. Shi, S. Dai, Y. Yang, Thin Solid Films 429, 102 (2003)CrossRefGoogle Scholar
  11. 11.
    D. Yuvaraj, K. Narasimha Rao, Vacuum 82, 1274 (2008)CrossRefGoogle Scholar
  12. 12.
    H.-C. Cheng, C.-F. Chen, C.-Y. Tsay, Appl. Phys. Lett. 90, 012113 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Sun, H. Sirringhaus, Nano. Lett. 5, 2408 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Drici, G. Djeteli, G. Tchangbedji, H. Derouiche, K. Jondo, K. Napo, J.C. Bernède, S. Ouro-Djobo, M. Gbagba, Phys. Stat. Sol. (a) 201, 1528 (2004)CrossRefGoogle Scholar
  15. 15.
    H.K. Kim, M. Mathur, Mat. Res. Soc. Symp. Proc. 238, 317 (1992)CrossRefGoogle Scholar
  16. 16.
    T. Okamura, Y. Seki, S. Nagakari, H. Okushi, Jpn. J. Appl. Phys. 31, L762 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Ristov, G.I. Sinadinovski, I. Grozdanov, M. Mitreski, Thin Solid Films 149, 65 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsGovt. Science CollegeBangaloreIndia
  2. 2.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia
  3. 3.Nano-Research for Advanced Materials TechnologiesBangaloreIndia
  4. 4.Department of PhysicsGovt. College for WomenMandyaIndia
  5. 5.CSIR-NALBangaloreIndia

Personalised recommendations