Skip to main content
Log in

In situ optical inspection of electrochemical migration during THB tests

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to get more information about the process of electrochemical migration (ECM), a novel in situ optical inspection system was developed and tested. The optical inspection system is applicable for real time in situ investigation to observe water condensation and dendrite growth during Thermal Humidity Bias (THB) tests. In this paper, a real time observation of water condensation and dendrite growth is studied on immersion silver (iAg), bare copper (Cu) and galvanic tin (gSn) interdigital (double comb) patterns prepared on FR4 substrate during Dew Point THB test. The real time in situ optical investigations were verified by real time voltage measurements, which are presented in the paper as well. The result shows that the water condensation mainly starts on the metal surface, which is an unexpected phenomenon since the preliminary condition of ECM is the presence of a continuous moisture film between the metallization stripes, e.g. on the surface of the insulation board material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Takemoto, R.M. Latanision, T.W. Eagar, A. Matsunawa, Electrochemical migration tests of solder alloys in pure water. Corros. Sci. 39, 1415–1430 (1997)

    Article  CAS  Google Scholar 

  2. S.B. Lee, J.Y. Yoo, J.Y. Jung, Y.B. Park, Y.S. Kim, Y.C. Joo, Electrochemical migration characteristics of eutectic SnPb solder alloy in printed circuit board. Thin Solid Films 504, 294–297 (2006)

    Article  CAS  Google Scholar 

  3. G. Harsanyi, New types of reliability problems in porous ceramic based microdevices. Mater. Chem. Phys. 44, 85–89 (1996)

    Article  CAS  Google Scholar 

  4. R.W. Leinz, D.B. Hoover, A.L. Meier, An electrochemical method for environmental application. J. Geochem. Explor. 64, 421–434 (1998)

    Article  CAS  Google Scholar 

  5. C. Zhang, P. Yalamanchili, M. Al-Sheikhley, A. Christou, Metal migration in epoxy encapsulated ECL devices. Microelectron. Reliab. 44, 1323–1330 (2004)

    Article  CAS  Google Scholar 

  6. G. Harsanyi, Comparing migratory resistive short formation abilities of conductor systems applied in advanced interconnection system. Microelectron. Reliab. 41, 229–237 (2001)

    Article  Google Scholar 

  7. D.Q. Yu, W. Jillek, E. Schmitt, Electrochemical migration of Sn–Pb and lead free solder alloys under distilled water. J. Mater. Sci. Mater. Electron. 17, 219–227 (2006)

    Article  CAS  Google Scholar 

  8. D.Q. Yu, W. Jillek, E. Schmitt, Electrochemical migration of lead free solder joints. J. Mater. Sci. Mater. Electron. 17, 229–241 (2006)

    Article  CAS  Google Scholar 

  9. O. Devos, C. Gabrielli, L. Beitone, Growth of electrolytic copper dendrites. II: Oxalic acid medium. J. Electroanal. Chem. 606, 85–94 (2007)

    Article  CAS  Google Scholar 

  10. Y.R. Yoo, Y.S. Kim, Influence of corrosion properties on electrochemical migration susceptibility of SnPb solders for PCBs. Metals Mater. Int. 13, 129–137 (2007)

    Article  CAS  Google Scholar 

  11. B.I. Noh, J.W. Yoon, W.S. Hong, Evaluation of electrochemical migration on flexible printed circuit boards with different surface finishes. J. Electron. Mater. 38, 902–907 (2009)

    Article  CAS  Google Scholar 

  12. J.Y. Jung, S.B. Lee, H.Y. Lee, Electrochemical migration characteristics of eutectic Sn–Pb solder alloy in NaCl and Na2SO4 solutions. J. Electron. Mater. 38, 691–699 (2009)

    Article  CAS  Google Scholar 

  13. J.Y. Jung, S.B. Lee, H.Y. Lee, Effect of ionization characteristics on electrochemical migration lifetimes of Sn-3.0Ag-0.5Cu solder in NaCl and Na2SO4 solutions. J. Electron. Mater. 37, 1111–1118 (2008)

    Article  CAS  Google Scholar 

  14. B.I. Noh, J.B. Lee, S.B. Jung, Effect of surface finish material on printed circuit board for electrochemical migration. Microelectron. Reliab. 48, 652–656 (2008)

    Article  CAS  Google Scholar 

  15. S.B. Lee, M.S. Jung, H.Y. Lee, Effect of bias voltage on the electrochemical migration behaviors of Sn and Pb. IEEE Trans. Device Mater. Reliab. 9, 483–488 (2009)

    Article  CAS  Google Scholar 

  16. S.B. Lee, J.Y. Jung, Y.R. Yoo, Dominant migration element in electrochemical migration of eutectic SnPb solder alloy, Electronic components and technology conference (ECTC 2006). doi: 10.1109/ECTC.2006.1645714

  17. J.Y. Jung, S.B. Lee, Y.C. Joo, H.Y. Lee, Y.B. Park, Anodic dissolution characteristics and electrochemical migration lifetimes of Sn solder in NaCl and Na2SO4 solutions. Microelectron. Eng. 85, 1597–1602 (2008)

    Article  CAS  Google Scholar 

  18. S.A. Yang, A. Christou, Failure model for silver electrochemical migration. IEEE Transaction on Device and Materials Reliability. 7, 188–196 (2007)

    Article  CAS  Google Scholar 

  19. J. Park, Y.B. Jo, J.K. Park, Propensity of copper dendrite growth on subassembly package components used in quad flat package. IEEE Trans. Device Mater. Reliab. 8, 368–374 (2008)

    Article  CAS  Google Scholar 

  20. Z. Sheng, M.H. Azarian, M. Pecht, Reliability of printed circuit boards processed using No-clean flux technology in temperature humidity bias conditions device and materials reliability. IEEE Trans. Device Mater. Reliab. 8, 426–434 (2008)

    Article  Google Scholar 

  21. B.I. Noh, S.B. Jung, Characteristics of environmental factor for electrochemical migration on printed circuit board. J. Mater. Sci. Mater. Electron. 19, 952–956 (2008)

    Article  CAS  Google Scholar 

  22. S. Yang, J. Wu, M. Pecht, Electrochemical migration of land grid array sockets under highly accelerated stress conditions. IEEE (2005) doi:0-7803-9113-6/05/$20.00

  23. W.J. Ready, L.J. Turbini, R. Nickel, J. Fischer, A novel test circuit for automatically detecting electrochemical migration and conductive anodic filament formation. J. Electron. Mater. 28, 1158–1163 (1999)

    Article  CAS  Google Scholar 

  24. B. Medgyes, R. Berényi, L. Jakab and G. Harsányi, Real-time monitoring of electrochemical migration during environmental tests. in International Spring Seminar on Electronics Technology (ISSE 2009). doi:10.1109/ISSE.2009.5207046

Download references

Acknowledgments

This work is connected to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This project is supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Medgyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medgyes, B., Illés, B., Berényi, R. et al. In situ optical inspection of electrochemical migration during THB tests. J Mater Sci: Mater Electron 22, 694–700 (2011). https://doi.org/10.1007/s10854-010-0198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0198-4

Keywords

Navigation