Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biomimetically-inspired photonic nanomaterials

Abstract

Nature has been kind enough to provide us with a 3-billion year old portfolio of an on-going experiment with living systems. There are well-optimised engineering solutions to mechanical, aerodynamic, hydrodynamic and optical problems all to be found in the living world Bar-Cohen (Bioinspir Biomim 1:P1–P12, 2006), Bhusan (Phil Trans Roy Soc A 367: 1445–1486, 2009). However, Nature is severely limited in the materials that are at its disposal so that as engineers we can improve on Nature’s solutions to particular problems by taking Nature’s design template as a starting point and then incorporating our own more appropriate materials, or metamaterials into that template design. We can also use Nature’s solutions as a starting point in our own “evolutionary algorithms” by taking Nature’s 3-billion year old solution as our initial starting point and then extrapolating that solution to (effectively) thousands of billions of years into the future using digital computers. This review article will consider just one particular application area of biomimetics—photonic nanomaterials Vukusic (Natural Photonics. Physics World pp. 35–39, 2004).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    Y. Bar-Cohen, Biomimetics–using nature to inspire human innovation. Bioinspir. Biomim. 1, P1–P12 (2006)

  2. 2.

    B. Bhusan, Biomimetics: lessons from nature–an overview. Phil. Trans. Roy. Soc. A 367, 1445–1486 (2009)

  3. 3.

    P. Vukusic, Natural photonics. Physics World pp. 35–39 (2004)

  4. 4.

    C. Darwin, The origin of species and the voyage of the Beagle. Everyman’s Library ISBN: 1-85715-258-1 (UK) (2003)

  5. 5.

    O.H. Schmitt, Some interesting and useful biomimetic transforms. Proc. 3rd Int. Biophysics Congress (Boston, MA, 29 Aug. To 3 Sept. 1969). P297 (1969)

  6. 6.

    M.D.B. Charlton, S.W. Roberts, G.J. Parker, Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide. Mater. Sci. Eng. B49, 155–165 (1997)

  7. 7.

    D.M. Tom, G.J. Lee, M.E. Parker, S.J. Zoorob, M.D. Cox, B. Charlton, Design and simulation of highly symmetric photonic quasi-crystals. Nanotechnology 16, 2703–2706 (2005)

  8. 8.

    M.E. Zoorob, M.D.B. Charlton, G.J. Parker, J.J. Baumberg, M.C. Netti, Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

  9. 9.

    G.J. Parker et al., Highly engineered mesoporous structures for optical processing. Phil. Trans. R. Soc. A 364(1838), 189–199 (2006)

  10. 10.

    M. Senechal, Quasicrystals and geometry (Cambridge, Cambridge University Press), ISBN 0521575419. P. 220, 243

  11. 11.

    J.A. Adam, Mathematics in nature (Princeton University Press, 2003). ISBN 0691127964. p. 220

  12. 12.

    F.R. Yeats, A growth-controlled model of the shape of a sunflower head. Math. Biosci. 187, 205–221 (2004)

  13. 13.

    M.E. Pollard, G.J. Parker, Low-contrast bandgaps of a planar parabolic spiral lattice. Opt. Lett. 34(18), 2805–2807 (2009)

  14. 14.

    A. Agrawal, N. Kejalakshmy, J. Chen, B.M.A. Rahman, K.T.V. Grattan, Golden spiral photonic crystal fiber: polarisation and dispersion properties. Opt. Lett. 33(22), 2716–2718 (2008)

  15. 15.

    S. Kinoshita, Structural colours in the realm of nature (World Scientific Publishing Co. Pte. Ltd, 2008)ISBN-139789812707833 ISBN-109812707832

  16. 16.

    A.R. Parker, 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2, R15–R28 (2000)

  17. 17.

    A.R. Parker, A geological history of reflecting optics. J. R. Soc. Interface. 2, 1–17 (2005)

  18. 18.

    P. Vukusic, J.R. Sambles, C.R. Lawrence, Structural colour: colour mixing in the wing scales of a butterfly. Nature 404, 457 (2000)

  19. 19.

    P. Vukusic, J.R. Sambles, C.R. Lawrence, R.J. Wootton, Quantified interference and diffraction in single Morpho butterfly scales. Proc. Roy. Soc. Lond. B 266, 1403–1411 (1999)

  20. 20.

    G. Parker, M. Charlton, Photonic crystals. Physics World pp. 29–34 (2000)

  21. 21.

    J.D. Joannopoulos, R.D. Meade, J.N. Winn Photonic crystals: molding the flow of light. (Princeton University Press, 1995) ISBN: 0691037442

  22. 22.

    P. Vukusic, J.R. Sambles, Photonic structures in biology. Nature 424, 852–855 (2003)

  23. 23.

    Teijin Fibres Limited http://www.teijinfiber.com/english/

  24. 24.

    Morphotex fibres by Teijin Fibers Limited. http://www.asknature.org/product/4c0e62f66bcccabf55a1f189da30acb3

  25. 25.

    ChromaFlair colour-shifting paints. http://www.asknature.org/product/b3a96e92b68e9de4226c40e058409d30

  26. 26.

    mirasol™ display technology by Qualcomm. http://www.asknature.org/product/af429a05af212ee9fc74977247408bf5

  27. 27.

    P. Vukusic, J.R. Sambles, C.R. Lawrence, Structurally assisted blackness in butterfly scales. Proc. Roy. Soc. Lond. B (Suppl.), (2004) 03BL0275.S1-S3

  28. 28.

    Epson develops long-life OLED display system capable of reproducing “the ultimate black”. http://www.physorg.com/news111673832.html

  29. 29.

    New material pushes the boundary of blackness. http://www.reuters.com/article/idUSN1555030620080115

  30. 30.

    Scientists make blackest material ever. http://www.wired.com/wiredscience/2009/03/ultrablack/

  31. 31.

    P. Vukusic, B. Hallam, J. Noyes, Brilliant whiteness in ultrathin beetle scales. Science 315, 348–349 (2007)

  32. 32.

    B.T. Hallam, A.G. Hiorns, P. Vukusic, Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles. Appl. Opt. 48(17), 3243–3249 (2009)

  33. 33.

    J. Yip, S.-P. Ng, K.-H. Wong, Brilliant whiteness surfaces from electrospun nanofiber webs. Textile Res. J. 79(9), 771–779 (2009)

  34. 34.

    R. Dawkins, The blind watchmaker (Penguin Books 2000) ISBN: 0140291229

  35. 35.

    Private Communication with S.J.Cox, 2003

  36. 36.

    P. Vukusic, I. Hooper, Directionally controlled fluorescence emission in butterflies. Science 310, 1151 (2005)

  37. 37.

    T. Eisner et al., Chemical defense of a primitive Australian bombardier beetle (Carabidae): Mystropomus regularis. Chemoecology 2, 29–34 (1991)

  38. 38.

    D.-E. Nilsson, S. Pelger, A pessimistic estimate of the time required for an eye to evolve. Proc. R. Soc. Lond. B 256, 53–58 (1994)

  39. 39.

    P.J. Herring, Reflective systems in aquatic animals. Comp. Biochem. Physiol. 109A, 523–546 (1994)

  40. 40.

    K.-h. Li, Laser like effect in biomolecules. Phys. Lett. 114A(7), 405–409 (1986)

  41. 41.

    S. Ruhman et al., Following evolution of bacteriorhodopsin in its teactive excited Xtate via stimulated emission pumping. J. Am. Chem. Soc. 124, 8854–8858 (2002)

  42. 42.

    H.-J. Wagner, R.H. Douglas, T.M. Frank, N.W. Roberts, J.C. Partridge, A novel vertebrate eye using both refractive and reflective optics. Curr. Biol. 19, 108–114 (2009)

  43. 43.

    A. Parker, Biomimetics: design by nature (National Geographic magazine, April 2008) pp. 68–91

  44. 44.

    The Exterior Coating with Lotus-Effect ® http://www.stocorp.com/allweb.nsf/lotusanpage

  45. 45.

    D.X. Hammer et al., Infrared spectral sensitivity of Melanophila acuminata. J. Insect Physiol. 47, 1441–1450 (2001)

Download references

Acknowledgments

I would like to thank Prof. Peter Dobson of Oxford University for supplying details of, and paper references for, biological material exhibiting optical gain, and Prof. Simon Cox (University of Southampton) for information and diagrams regarding the evolutionary design of optical nanostructures. I would also like to thank Prof. Andrew Parker (Natural History Museum), Dr. Pete Vukusic (University of Exeter) and Dr. Stuart Boden with Prof. Darren Bagnall (University of Southampton) for kind permission to use their hard-won microscopy images and for many useful discussions. Thanks also to Dr. Tamara M. Frank for permission to use her outstanding image of the amazing Brownsnout Spookfish. I would also like to acknowledge the financial support of the EPSRC in a series of photonic crystal related grants which provided the base material for much of this article.

Author information

Correspondence to Gregory J. Parker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parker, G.J. Biomimetically-inspired photonic nanomaterials. J Mater Sci: Mater Electron 21, 965–979 (2010). https://doi.org/10.1007/s10854-010-0164-1

Download citation

Keywords

  • Photonic Crystal
  • Structural Colour
  • Butterfly Wing
  • Refractive Index Contrast
  • Wing Scale