Skip to main content

Advertisement

Log in

Structural and functional properties of (1 − x)PLZT–xPBLBiN nanoceramic composites by high-energy mechanical activation technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric and piezoelectric properties of (1 − x)[(Pb0.988La0.012)(Zr0.53Ti0.47)0.997O3]–x[Pb0.557Ba0.38La0.022Bi0.02Nb2O6] composite system consisting of both perovskite tetragonal (4 mm) and tungsten bronze orthorhombic (m2 m) phases, prepared in situ by mechanical activation method are presented and discussed in relation to x (PBLBiN) variation. The crystal structure and morphology of the composites were examined with X-ray diffraction and scanning and transmission electron microscopes. Scanning electron micrographs showed structural homogeneity. Dielectric and piezoelectric properties were studied as a function of x to characterize electrical properties of composites. The presence of two trivalent ions (La3+ and Bi3+) in x resulted in high dielectric and piezoelectric properties. The possible mechanisms of mechanical activation technique of (1 − x)PLZT–xPBLBiN nanoceramic composite system are discussed. The optimum dielectric and piezoelectric properties were found in x = 0.6 in (1 − x)PLZT–xPBLBiN nanoceramic composite system which could be ideal for electromechanical and energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Lee, R.S. Feigelson, A. Liu, L. Hesselink, J. Appl. Phys. 83(11), 5967–5972 (1998)

    Article  CAS  Google Scholar 

  2. C. Miclea, C. Tanasoiu, A. Gheorghiu, C.F. Miclea, V. Tanasoiu, J. Mater. Sci. 39, 5431–5434 (2004)

    Article  CAS  Google Scholar 

  3. M. Adamczyk, Z. Ujma, L. Szymczak, A. Soszynski, J. Koperski, Mater. Sci. Eng. B 136, 170–176 (2007)

    Article  CAS  Google Scholar 

  4. R.N.P. Choudhary, J. Mal, Mater. Lett. 54, 175–180 (2002)

    Article  CAS  Google Scholar 

  5. K. Ramam, M. Lopez, J. Alloys Comp. 465(1–2), 446–451 (2008)

    Article  CAS  Google Scholar 

  6. L.B. Kong, W. Zhu, O.K. Tan, Mater. Lett. 42, 232–239 (2000)

    Article  CAS  Google Scholar 

  7. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, J. Appl. Phys. 94(9), 6091–6096 (2003)

    Article  CAS  Google Scholar 

  8. Z. Brankovic, G. Brankovic, C. Jovalekic, Y. Maniette, M. Cilense, J.A. Varela, Mater. Sci. Eng. A 345, 243–248 (2003)

    Article  Google Scholar 

  9. A.R. James, J. Subrahmanyam, K.L. Yadav, J. Phys. D Appl. Phys. 39, 2259–2263 (2006)

    Article  CAS  Google Scholar 

  10. J. Wang, D.M. Wan, J.M. Xue, W.B. Ng, J. Am. Ceram. Soc. 82(2), 477–479 (1999)

    Article  CAS  Google Scholar 

  11. S.K. Ang, J.M. Xue, J. Wang, J. Alloys Comp. 343, 156–163 (2002)

    Article  Google Scholar 

  12. K. Ramam, M. Lopez, K. Chandramouli, J. Alloys Comp. (2009) doi:10.1016/j.jallcom.2009.08.082

  13. M. Venet, D. Garcia, J.A. Eiras, J.C. M’peko, H. Amorin, Phys. Stat. Sol. (b) 238, 198–203 (2003)

    Article  CAS  Google Scholar 

  14. M. Venet, F.L. Zabotto, J.A. Eiras, M. Rincon, P.S. Pizani, D. Garcia, Ferroelectrics 337, 213–218 (2006)

    Article  CAS  Google Scholar 

  15. Z.H. Zhou, P.Y. Du, W.J. Weng, G.R. Han, G. Shen, J. Inorg. Mater. 19(6), 1322 (2004)

    CAS  Google Scholar 

  16. M.S. Kim, J.H. Lee, J.J. Kim, H.Y. Lee, S.H. Cho, Ceram. Silikáty 49(1), 13–18 (2005)

    CAS  Google Scholar 

  17. Z. Zhou, X. Cheng, P. Du, Mater. Chem. Phys. 100, 464–467 (2006)

    Article  CAS  Google Scholar 

  18. L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Prog. Mater. Sci. 53, 207 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the research grant funded by Fondecyt (Fondo Nacional de Desarrollo Científico y Tecnológico, Chile) through project No. 1080635. The authors would like to thank University of Concepcion, Chile and Andhra University, India for their collaboration and support extended. The authors would also like to thank Mr. Ranganathan, Mr. Krishnamurthy and Ms. C. N. Devi for their technical assistance and valuable suggestions extended during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramam Koduri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koduri, R., Lopez, M. & Kemburu, C. Structural and functional properties of (1 − x)PLZT–xPBLBiN nanoceramic composites by high-energy mechanical activation technique. J Mater Sci: Mater Electron 22, 437–443 (2011). https://doi.org/10.1007/s10854-010-0156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0156-1

Keywords

Navigation