Skip to main content
Log in

Diamond electromagnetic band gap structure based on Bi(Nb0.992V0.008)O4 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) diamond structure electromagnetic band gap (EBG) structures containing high-K Bi(Nb0.992V0.008)O4 (BVN) ceramic, fabricated by rapid-prototyping (RP) and gel casting methods, were investigated. The simulations based on finite element method (FEM) were employed to model the band structures. High-K Bi(Nb0.992V0.008)O4 ceramic was made into gel to cast into the diamond structure molds fabricated by rapid-prototyping method. Then the green bodies were sintered at 900 °C to obtain well densified EBG samples. The transmission characteristics of the EBG structures were measured by transmission/reflection (T/R) methods using a vector network analyzer. Wide complete band gap was observed in the transmission characteristics from 10.08 to 12.59 GHz and it agreed well with the simulation results, which was from 10 to 12.19 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals, 2nd edn. (Princeton University Press, Princeton, 1995)

    Google Scholar 

  2. Y. Rahmat-Samii, H. Mosallaei, Eleventh International Conference on Antennas and Propagation 480, 560 (2001)

  3. D. Sievenpiper, L.J. Zhang, R.F.J. Broas, N.G. Alexoplous, E. Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 2059 (1999)

    Article  Google Scholar 

  4. K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)

    Article  CAS  Google Scholar 

  5. V. Berger, Opt. Mater. 11, 131 (1999)

    Article  CAS  Google Scholar 

  6. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Phys. Rev. Lett. 67, 2295 (1991)

    Article  CAS  Google Scholar 

  7. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis, K.M. Ho, Phys. Rev. B 50, 1945 (1994)

    Article  Google Scholar 

  8. S. Noda, Physica B 279, 142 (2000)

    Article  CAS  Google Scholar 

  9. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzyckl, S.R. Kurtz, J. Bur, Nature 394, 251 (1998)

    Article  CAS  Google Scholar 

  10. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001)

    Article  CAS  Google Scholar 

  11. S. Kirihara, Y. Miyamoto, K. Takenaga, M.W. Takeda, K. Kajiyama, Solid State Comm. 121, 435 (2002)

    Article  CAS  Google Scholar 

  12. D. Zhou, H. Wang, X. Yao, Y. Liu, J. Electroceram. 21, 469 (2008)

    Article  Google Scholar 

  13. D. Zhou, W. Wu, H. Wang, Y.S. Jiang, X. Yao, Mater. Sci. Eng. A 460, 652 (2007)

    Article  Google Scholar 

  14. D. Zhou, L.X. Pang, X. Yao, H. Wang, Mater. Chem. Phys. 115, 126 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC projects of China (50835007, 60871044, 50902090), National 973 project of China (2009CB623302) and National Project of International Science and Technology Collaboration (2009DFA51820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, W., Wang, H., Wang, M. et al. Diamond electromagnetic band gap structure based on Bi(Nb0.992V0.008)O4 ceramic. J Mater Sci: Mater Electron 22, 422–425 (2011). https://doi.org/10.1007/s10854-010-0153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0153-4

Keywords

Navigation