Skip to main content
Log in

0.3–3 GHz magneto-dielectric properties of nanostructured NiZnCo ferrite from hydrothermal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple hydrothermal route with cetyltrimethylammonium bromide was proposed for directly synthesizing single-crystalline NiZnCo ferrite at 160 °C. X-ray diffraction patterns and micrographs indicate that products consist of spinel ferrite nanocrystals. The dielectric constant of NiZnCo ferrite is about 11 and the imaginary part of complex permittivity is 1.3. The saturation magnetization of Ni0.54Zn0.48Fe1.98O4 increases from 41.36 to 73.9 emu/g for Ni0.55Zn0.46Fe1.98O4 with a cobalt stoichiometry of 0.01. The real part μ′ of complex permeability for NiZnCo ferrite reaches 3 at 1 GHz. The imaginary part μ″ of NiZnCo ferrite has values higher than 1.2 within 0.7–3 GHz. Through the incorporation of the magnetic fillers, the low dielectric constant of the composites may meet the requirements of impedance matching to achieve maximal absorption of the electromagnetic energy in GHz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Cruickshank, 1–2 GHz dielectrics and ferrites: overview and perspectives. J. Euro. Ceram. Soc. 23, 2721–2726 (2003)

    Article  CAS  Google Scholar 

  2. M. Damnjanovic, G. Stojanovic, V. Desnica, Analysis, design, and characterization of ferrite EMI suppressors. IEEE Trans. Magn. 42, 270–277 (2006)

    Article  CAS  ADS  Google Scholar 

  3. A.M. Abdun, Dielectric behaviour in Ni-Zn ferrites. J. Magn. Magn. Mater. 192, 121–124 (1999)

    Article  ADS  Google Scholar 

  4. V. Grimal, D. Autissier, L. Longuet, Iron, nickel and zinc stoichiometric influences on the dynamic magneto-elastic properties of spinel ferrites. J. Euro. Ceram. Soc. 26(16), 3687–3693 (2006)

    Article  CAS  Google Scholar 

  5. A. Verma, T.C. Goel, R.G. Mendiratta, Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater. Sci. Eng. B 60(2), 156–162 (1999)

    Article  Google Scholar 

  6. O.F. Caltun, L. Spinu, Magnetic Properties of High Frequency Ni-Zn Ferrites Doped with CuO. IEEE Trans. Magn. 37(4), 3353–3355 (2001)

    Article  Google Scholar 

  7. B. Parvatheeswara Rao, O.F. Caltun, Microstructure and magnetic behaviour of Ni-Zn-Co ferrites. J. Optoelectron. Adv. Mater. 8(3), 995–997 (2006)

    Google Scholar 

  8. S. Komarneni, E. Fregeau, E. Breval, Hydrothermal preparation of ultrafine ferrites and their sintering. J. Am. Ceram. Soc. 71(1), 26–28 (1998)

    Google Scholar 

  9. A.A. Burukhin, B.R. Churagulov, N.N. Oleinikov, Synthesis of nanosized ferrite powders from hydrothermal and supercritical solutions. Russian J. Inorg. Chem. 46(5), 646–651 (2001)

    Google Scholar 

  10. M. Rozman, M. Drofenik, Hydrothermal synthesis of manganese zinc ferrites. J. Am. Chem. Soc. 78(9), 2449–2455 (1995)

    CAS  Google Scholar 

  11. C. O’Handley Robert, Modern magnetic materials principles and application (Chemical Industry Publishing House, Beijing, 1996), pp. 175–194. 214–231 (in Chinese)

    Google Scholar 

  12. X. Shen, R.Z. Gong, Z.K. Feng, Effective permeability of NiZnCo ferrite granular thin films. J. Am. Ceram. Soc. 90(7), 2196–2199 (2007)

    Article  CAS  Google Scholar 

  13. R. Dosoudil, V. Olah, Measurement of complex permeability in the RF band. J. Electric. Eng. 55, 97–100 (2004)

    Google Scholar 

  14. J. Azadmanjiri, H.K. Salehani, M.R. Barati, Preparation and electromagnetic properties of Ni1−x Cu x Fe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Mater. Lett. 61, 84–87 (2007)

    Article  CAS  Google Scholar 

  15. L.L. Hench, J.K. West, Principles of electronic ceramics (Wiley, New York, 1990), p. 189

    Google Scholar 

  16. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  ADS  Google Scholar 

  17. S.L. Pereira, H.D. Pfannes, A.A.M. Filho, A comparative study of NiZn ferrites modified by the addition of cobalt. Mater. Resea. 2(3), 231–234 (1999)

    CAS  Google Scholar 

  18. A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, Magnetic and structural properties of NiFe2O4 ferrite nanopowder doped with Zn2+. J. Magn. Magn. Mater. 320, 370–372 (2008)

    Article  ADS  Google Scholar 

  19. T. Nakamura, Low-Temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168, 285–291 (1997)

    Article  CAS  ADS  Google Scholar 

  20. P.G. Bercoff, H.R. Bertorello, Localized canting effect in Zn-substituted Ni ferrites. J. Magn. Magn. Mater. 213, 56–62 (2000)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the foundation of China ‘211’ engineering construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Wang, Y., Yang, X. et al. 0.3–3 GHz magneto-dielectric properties of nanostructured NiZnCo ferrite from hydrothermal process. J Mater Sci: Mater Electron 21, 630–634 (2010). https://doi.org/10.1007/s10854-009-9968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9968-2

Keywords

Navigation