Skip to main content
Log in

Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders exhibited superior electrical properties and microstructure homogeneity. The improvement of electrical properties can be attributed to small grain size, homogenous distribution of dopants and elimination of large Bi-Pockets. In addition, the processing route of schottky barrier formation is quite different from what is generally considered as the method of barrier formation in ZnO grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Nanotechnology 14, 11–15 (2003)

    Article  CAS  ADS  Google Scholar 

  2. S.C. Pillai, J.M. Kelly, D.E. McCormack, R. Ramesh, J. Mater. Chem. 18, 3926–3932 (2008)

    Article  CAS  Google Scholar 

  3. C.P. Fah, J. Wang, Solid State Ion. 132, 107–117 (2000)

    Article  Google Scholar 

  4. K.X. Ya, W. TianDiao, H. Yin, T. MinDe, Mater. Res. Bull. 32, 1165–1171 (1998)

    Google Scholar 

  5. D.R. Clarke, J. Am. Ceram. Soc. 82, 485–502 (1999)

    CAS  Google Scholar 

  6. G.E. Pike, in Semiconducting Polycrystalline Ceramics, ed. by M. V. Swain. Materials Science and Technology, vol 11 (VCH, Weinheim, 1994), pp. 731–54

  7. K. Kobayashi, O. Wada, M. Kobayashi, Y. Takada, J. Am. Ceram. Soc. 81, 2071–2076 (1998)

    Article  CAS  Google Scholar 

  8. J. Shi, Q. Cao, Y. Wei, Y. Huang, Mat. Sci. Eng. B 99, 344–347 (2003)

    Article  CAS  Google Scholar 

  9. M. Singbal, V. Cbbabra, P. Kang, D.O. Shah, Mater. Res. Bull. 32, 239–247 (1997)

    Article  Google Scholar 

  10. P. Duran, F. Capel, J. Tartaj, C. Moure, J. Eur. Ceram. Soc. 22, 67–77 (2002)

    Article  CAS  Google Scholar 

  11. S. Chu, T. Yan, S. Chen, Ceram. Int. 26, 733–737 (2000)

    Article  CAS  Google Scholar 

  12. C. i Hu, M.N. Rahaman, J. Am. Ceram. Soc. 75, 2066–2070 (1992)

    Article  Google Scholar 

  13. D. Hreniak, P. Psuja, W. Strek, J. Ho lsa, J. Non-cryst. Solids 354, 445–450 (2008)

    Article  CAS  ADS  Google Scholar 

  14. R.G. Dosch, B.A. Tuttle, R.A. Brooks, J. Mater. Res. 1, 90–99 (1986)

    Article  CAS  ADS  Google Scholar 

  15. Y. Li, G. Li, Q. Yin, Mat. Sci. Eng. B 130, 264–268 (2006)

    Article  CAS  Google Scholar 

  16. Q. Wang, Y. Qin, G.J. Xu, L. Chen, Y. Li, L. Duan, Z.X. Li, Y.L. Li, P. Cui, Ceram. Int. 34, 1697–1701 (2008)

    Article  CAS  Google Scholar 

  17. A. Lorenz, J. Ott, M. Harrer, E.A. Preissner, A.H. Whitehead, M. Schreiber, J. Eur. Ceram. Soc. 21, 1887–1891 (2001)

    Article  CAS  Google Scholar 

  18. P. Sulcova, M. Trojan, Dyes Pigments 36, 287–293 (1998)

    Article  CAS  Google Scholar 

  19. M. Afzal, P.K. Butt, H. Ahrnad, J. Therm. Anal. Calorim. 37, 1015–1023 (1991)

    Article  Google Scholar 

  20. M.B. Maecka, R. Gajerski, S. Labus, J. Therm. Anal. Calorim. 72, 135–144 (2003)

    Article  Google Scholar 

  21. T. Wanjun, C. Donghua, Chem. Pap. 61, 329–332 (2007)

    Article  CAS  Google Scholar 

  22. W. Onreabroy, N. Sirikulrat, A.P. Brown, C. Hammond, S.J. Milne, Solid State Ion. 177, 411–420 (2006)

    Article  CAS  Google Scholar 

  23. J.P. Gambino, W.D. Kingery, G.E. Pike, L.M. Levinson, H.R. Philipp, J. Am. Ceram. Soc. 72, 642–645 (1989)

    Article  CAS  Google Scholar 

  24. F. Yuan, H. Ryu, J. Am. Ceram. Soc. 87, 736–738 (2004)

    Article  CAS  Google Scholar 

  25. D. Wei, R. Dave, R. Pfeffer, J. Nano. Res. 4, 21–41 (2002)

    Article  CAS  Google Scholar 

  26. A. Banerjee, T.R. Ramamohan, M.J. Patni, Mater. Res. Bull. 36, 1259–1267 (2001)

    Article  CAS  Google Scholar 

  27. J.L. Baptista, P.Q. Mantas, J. Electroceram. 4, 215–224 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Faghihi Sani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaee, S.A., Maleki Shahraki, M., Faghihi Sani, M.A. et al. Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders. J Mater Sci: Mater Electron 21, 571–577 (2010). https://doi.org/10.1007/s10854-009-9959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9959-3

Keywords

Navigation