Skip to main content
Log in

Microwave ferrites, part 2: passive components and electrical tuning

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-loss ferrimagnets are the basis for passive microwave components operating in a wide range of frequencies. The magnetic resonances of passive components can be tuned using static magnetic fields over a wide frequency range, where higher operation frequencies require higher magnetic bias unless hexaferrites with large crystalline anisotropy are used. However, electrical tuning of the operation frequency, which can be achieved if the magnetic property of the material is sensitive to the field through magnetoelectric (ME) coupling, is more attractive than magnetic tuning. In the so-called multiferroic materials such as TbMnO3, TbMn2O5, BiFeO3, Cr2O3, and BiMnO3, which possess simultaneously both the ferroelectric and ferromagnetic properties, ME coupling is very small to be practical. The ME effect, however, can be significantly enhanced in the case of bilayer/multilayer structures with one constituent highly piezoelectric, such as Pb(Zr1 − x Ti x )O3 (PZT) and 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT), and the other highly ferromagnetic, opening up the possibility for a whole host of tunable microwave passive components. In such structures, the strain induced by the electric field applied across the piezoelectric material is transferred mechanically to the magnetic material, which then experiences a change in its magnetic permeability through magnetostriction. Additionally, electrical tuning coupled with high dielectric permittivity and magnetic susceptibility could lead to miniature microwave components and/or make operation at very high frequencies possible without the need for increased size and weight common in conventional approaches. In Part 1 of this review, fundamentals of ferrite materials, interconnecting chemical, structural, and magnetic properties with the treatment of various types of ferrites used in microwave systems are discussed. Part 2 discusses the basis for coupling between electrical and magnetic properties for highly attractive electrical tuning of passive components by combining piezoelectric materials with ferrites and various device applications of ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Notes

  1. An alloy formed by mixing 48–50% cobalt with iron (and up to 2% vanadium may be added). The alloy was discovered in the United States around 1920. It has a high permeability at high flux densities with a very high saturation point with a magnetic transition temperature is 980 °C.

  2. Named after Henry Poincaré; a three-dimensional graphical representation of the state of polarization of a light beam used to describe the polarization and changes in the polarization of a propagating electromagnetic wave.

References

  1. Ü. Özgür, Y. Alivov, and H. Morkoç, J. Mater. Sci.: Mater. Electron. (2009). doi:10.1007/s10854-009-9923-2

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008). doi:10.1063/1.2836410

    Article  ADS  CAS  Google Scholar 

  3. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006). doi:10.1038/nature05023

    Article  PubMed  ADS  CAS  Google Scholar 

  4. M. Fiebig, J. Phys. D 38, R123 (2005)

    Article  ADS  CAS  Google Scholar 

  5. S.L. Hou, N. Bloembergen, Phys. Rev. 138, A1218 (1965). doi:10.1103/PhysRev.138.A1218

    Article  ADS  Google Scholar 

  6. R.E. Cohen, Nature 358, 136 (1992). doi:10.1038/358136a0

    Article  ADS  CAS  Google Scholar 

  7. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000). doi:10.1021/jp000114x

    Article  CAS  Google Scholar 

  8. K. Lefki, G.J.M. Dormans, J. Appl. Phys. 76, 1764 (1994). doi:10.1063/1.357693

    Article  ADS  Google Scholar 

  9. Etienne du Trémolet de Lacheisserie, Magnetostriction: Theory and Applications of Magnetoelasticity (CRC Press, Boca Raton, 1993), Chap. 2

  10. C. Kittel, Rev. Mod. Phys. 21, 541 (1949). doi:10.1103/RevModPhys.21.541

    Article  ADS  Google Scholar 

  11. R.A. McCurie, Ferromagnetic Materials, Structure and Properties (Academic Press, San Diego, 1994), p. 91

    Google Scholar 

  12. G. Harshé, J.P. Dougherty, R.E. Newnham, Int. J. Appl. Electromag. Mater. 4, 145 (1993)

    Google Scholar 

  13. J. Van Den Boomgard, A.M.J.G. Van Run, J. Van Suchetelen, Ferroelectrics 10, 295 (1976)

    Google Scholar 

  14. A.S. Zubkov, Elektrichestvo 10, 77 (1978)

    Google Scholar 

  15. A.L. Kholkin, E.K. Akdogan, A. Safari, P.-F. Chauvy, N. Setter, J. Appl. Phys. 89, 8066 (2001). doi:10.1063/1.1371002

    Article  ADS  CAS  Google Scholar 

  16. S. Zhang, L. Lebrun, D.-Y. Jeong, C.A. Randall, Q. Zhang, T.R. Shrout, J. Appl. Phys. 93, 9257 (2003). doi:10.1063/1.1571966

    Article  ADS  CAS  Google Scholar 

  17. G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Phys. Rev. B 65, 134402 (2002). doi:10.1103/PhysRevB.65.134402

    Article  ADS  CAS  Google Scholar 

  18. E.I. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959)

    Google Scholar 

  19. G.T. Rado, V.J. Folen, Phys. Rev. Lett. 7, 310 (1961). doi:10.1103/PhysRevLett.7.310

    Article  ADS  Google Scholar 

  20. S. Foner, M. Hanabusa, J. Appl. Phys. 34, 1246 (1963). doi:10.1063/1.1729456

    Article  ADS  CAS  Google Scholar 

  21. D.N. Astrov, Sov. Phys. JETP 11, 708 (1961)

    Google Scholar 

  22. D.N. Astrov, Sov. Phys. JETP 13, 729 (1961)

    Google Scholar 

  23. V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rev. Lett. 6, 607 (1961). doi:10.1103/PhysRevLett.6.607

    Article  ADS  CAS  Google Scholar 

  24. J.P. Rivera, Ferroelectrics 161, 165 (1994). doi:10.1080/00150199408213357

    Article  CAS  Google Scholar 

  25. B.I. Al’shin, D.N. Astrov, Sov. Phys. JETP 17, 809 (1963)

    Google Scholar 

  26. G.T. Rado, Phys. Rev. Lett. 13, 335 (1964). doi:10.1103/PhysRevLett.13.335

    Article  ADS  Google Scholar 

  27. R.P. Santoro, D.J. Segal, R.E. Newnham, J. Phys. Chem. Solids 27, 1192 (1966). doi:10.1016/0022-3697(66)90097-7

    Article  ADS  CAS  Google Scholar 

  28. I. Kornev, M. Bichurin, J.-P. Rivera, S. Gentil, A.G.M. Jansen, H. Schmid, P. Wyder, Phys. Rev. B 62, 12247 (2000). doi:10.1103/PhysRevB.62.12247

    Article  ADS  CAS  Google Scholar 

  29. D. Vaknin, J.L. Zarestky, J.P. Rivera, H. Schmid, Phys. Rev. Lett. 92, 207201 (2004). doi:10.1103/PhysRevLett.92.207201

    Article  PubMed  ADS  CAS  Google Scholar 

  30. J.F. Scott, Phys. Rev. B 16, 2329 (1977). doi:0.1103/PhysRevB.16.2329

    Article  ADS  CAS  Google Scholar 

  31. B. Ponomarev, S.A. Ivanov, F.Y. Popov, V.D. Negrii, B.S. Redkin, Ferroelectrics 161, 43 (1994). doi:10.1080/00150199408213350

    Article  CAS  Google Scholar 

  32. E. Ascher, H. Rieder, H. Schmid, H. Stössel, J. Appl. Phys. 37, 1404 (1966). doi:10.1063/1.1708493

    Article  ADS  CAS  Google Scholar 

  33. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982). doi:10.1070/PU1982v025n07ABEH004570

    Article  ADS  Google Scholar 

  34. T. Watanabe, K. Kohn, Phase Transit. 15, 57 (1989). doi:10.1080/01411598908206837

    Article  CAS  Google Scholar 

  35. G.A. Smolenskii, A.I. Agranovskaya, V.A. Isupov, Sov. Phys. Solid State 1, 442 (1959)

    Google Scholar 

  36. H. Tsujino, K. Kohn, Solid State Commun. 83, 639 (1992). doi:10.1016/0038-1098(92)90666-W

    Article  ADS  CAS  Google Scholar 

  37. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392 (2004). doi:10.1038/nature02572

    Article  PubMed  ADS  CAS  Google Scholar 

  38. T. Kimura, G. Lawes, A.P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005). doi:10.1103/PhysRevLett.94.137201

    Article  PubMed  ADS  CAS  Google Scholar 

  39. M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002). doi:10.1038/nature01077

    Article  PubMed  ADS  CAS  Google Scholar 

  40. V. Laukhin, V. Skumryev, X. Martí, D. Hrabovsky, F. Sánchez, M.V. García-Cuenca, C. Ferrater, M. Varela, U. Lüders, J.F. Bobo, J. Fontcuberta, Phys. Rev. Lett. 97, 227201 (2006). doi:10.1103/PhysRevLett.97.227201

    Article  PubMed  ADS  CAS  Google Scholar 

  41. A. Moreira dos Santos, S. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Solid State Commun. 122, 49 (2002)

    CAS  Google Scholar 

  42. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, T. Yokura, Phys. Rev. B 67, 180401 (2003). doi:10.1103/PhysRevB.67.180401

    Article  ADS  CAS  Google Scholar 

  43. J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature 434, 364 (2005). doi:10.1038/nature03348

    Article  PubMed  ADS  CAS  Google Scholar 

  44. T.H. O’Dell, Philos. Mag. 16, 487 (1967). doi:10.1080/14786436708220859

    Article  ADS  Google Scholar 

  45. B.B. Krichevtsov, V.V. Pavlov, R.V. Pasarev, A.G. Selitsky, Ferroelectrics 161, 65 (1994)

    CAS  Google Scholar 

  46. J.P. Rivera, Ferroelectrics 161, 147 (1994). doi:10.1080/00150199408213357

    Article  CAS  Google Scholar 

  47. B.B. Krichevtsov, V.V. Pavlov, R.V. Pisarev, JETP Lett. 49, 535 (1989)

    ADS  Google Scholar 

  48. G.T. Rado, J.M. Ferrari, W.G. Maisch, Phys. Rev. B 29, 4041 (1984). doi:10.1103/PhysRevB.29.4041

    Article  ADS  CAS  Google Scholar 

  49. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003). doi:10.1126/science.1080615

    Article  PubMed  ADS  CAS  Google Scholar 

  50. Y.F. Popov, A.M. Kadomtseva, S.S. Krotov, D.V. Belov, G.P. Vorob’ev, P.N. Makhov, A.K. Zvezdin, Low Temp. Phys. 27, 478 (2001). doi:10.1063/1.1382990

    Article  ADS  CAS  Google Scholar 

  51. A.K. Zvezdin, A.M. Kadomtseva, S.S. Krotov, A.P. Pyatakov, Y.F. Popov, G.P. Vorob’ev, J. Magn. Magn. Mater. 300, 224 (2006). doi:10.1016/j.jmmm.2005.10.068

    Article  ADS  CAS  Google Scholar 

  52. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203 (2005). doi:10.1126/science.1105422

    Article  PubMed  CAS  Google Scholar 

  53. S. Dong, J. Zhai, J.-F. Li, D. Viehland, Appl. Phys. Lett. 89, 122903 (2006). doi:10.1063/1.2355459

    Article  ADS  CAS  Google Scholar 

  54. S. Dong, J. Zhai, F. Bai, J.-F. Li, D. Viehland, Appl. Phys. Lett. 87, 062502 (2005). doi:10.1063/1.2007868

    Article  ADS  CAS  Google Scholar 

  55. V. Corral-Flores, D. Bueno-Baques, D. Carrillo-Flores, J.A. Matutes-Aquino, J. Appl. Phys. 99, 08J503 (2006)

    Article  CAS  Google Scholar 

  56. S. Stein, M. Wuttig, D. Viehland, E. Quandt, J. Appl. Phys. 97, 10Q301 (2005)

    Article  CAS  Google Scholar 

  57. T. Wu, M.A. Zurbuchen, S. Saha, R.-V. Wang, S.K. Streiffer, J.F. Mitchell, Phys. Rev. B 73, 134416 (2006). doi:10.1103/PhysRevB.73.134416

    Article  ADS  CAS  Google Scholar 

  58. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Phys. Rev. B 64, 214408 (2001). doi:10.1103/PhysRevB.64.214408

    Article  ADS  CAS  Google Scholar 

  59. N. Zhang, T. Dekai Liang, Schneider, G. Srinivasan, J. Appl. Phys. 101, 083902 (2007). doi:10.1063/1.2717131

    Article  ADS  CAS  Google Scholar 

  60. G. Srinivasan, C.P. De Vreugd, V.M. Laletin, N. Paddubnaya, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Phys. Rev. B 71, 184423 (2005). doi:10.1103/PhysRevB.71.184423

    Article  ADS  CAS  Google Scholar 

  61. J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys. 40, 4948 (2001). doi:10.1143/JJAP.40.4948

    Article  ADS  CAS  Google Scholar 

  62. H. Ryu, P. Murugavel, J.H. Lee, S.C. Chae, T.W. Noh, Y.S. Oh, H.J. Kim, K.H. Kim, J.H. Jang, M. Kim, C. Bae, J.-G. Park, Appl. Phys. Lett. 89, 102907 (2006). doi:10.1063/1.2338766

    Article  ADS  CAS  Google Scholar 

  63. J. Zhai, N. Cai, Z. Shi, Y. Lin, C.-W. Nan, J. Phys. D 37, 823 (2004)

    Article  ADS  CAS  Google Scholar 

  64. R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007). doi:10.1063/1.2404773

    Article  ADS  CAS  Google Scholar 

  65. J.-P. Zhou, H.-C. He, Z. Shi, G. Liu, C.-W. Nan, J. Appl. Phys. 100, 094106 (2006). doi:10.1063/1.2358191

    Article  ADS  CAS  Google Scholar 

  66. Y. Jia, S.W. Or, J. Wang, H.L.W. Chan, X. Zhao, H. Luo, J. Appl. Phys. 101, 104103 (2007). doi:10.1063/1.2732420

    Article  ADS  CAS  Google Scholar 

  67. S. Dong, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1236 (2003). doi:10.1109/TUFFC.2003.1244738

    Article  PubMed  Google Scholar 

  68. J.G. Wan, J.M. Liu, H.L.W. Chan, C.L. Choy, G.H. Wang, C.W. Nan, J. Appl. Phys. 93, 9916 (2003). doi:10.1063/1.1577404

    Article  ADS  CAS  Google Scholar 

  69. M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.-M. Liu, X.P. Jiang, C.W. Nan, J. Appl. Phys. 95, 8069 (2004). doi:10.1063/1.1739531

    Article  ADS  CAS  Google Scholar 

  70. S. Dong, J. Cheng, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 4812 (2003). doi:10.1063/1.1631756

    Article  ADS  CAS  Google Scholar 

  71. M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B 68, 132408 (2003). doi:10.1103/PhysRevB.68.132408

    Article  ADS  CAS  Google Scholar 

  72. N. Zhang, W. Ke, T. Schneider, G. Srinivasan, J. Phys. Condens. Matter 18, 11013 (2006). doi:10.1088/0953-8984/18/48/029

    Article  ADS  CAS  Google Scholar 

  73. C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Phys. Rev. B 75, 054408 (2007). doi:10.1103/PhysRevB.75.054408

    Article  ADS  CAS  Google Scholar 

  74. A.M.J.G. Vanrun, D.R. Terrell, J.H. Scholing, J. Mater. Sci. 9, 1710 (1974). doi:10.1007/BF00540771

    Article  ADS  CAS  Google Scholar 

  75. J. van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978). doi:10.1007/BF00553210

    Article  ADS  Google Scholar 

  76. N. Cai, J. Zhai, C.W. Nan, Y. Lin, Z. Shi, Phys. Rev. B 68, 224103 (2003). doi:10.1103/PhysRevB.68.224103

    Article  ADS  CAS  Google Scholar 

  77. H.S. Shastri, G. Srinivasan, M.I. Bichurin, V.M. Petrov, A.S. Tatarenko, Phys. Rev. B 70, 064416 (2004). doi:10.1103/PhysRevB.70.064416

    Article  ADS  CAS  Google Scholar 

  78. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006). doi:10.1063/1.2191950

    Article  ADS  CAS  Google Scholar 

  79. S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 2307 (2004). doi:10.1063/1.1791732

    Article  ADS  CAS  Google Scholar 

  80. U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Appl. Phys., A Mater. Sci. Process. 78, 33 (2004). doi:10.1007/s00339-003-2293-3

    Article  ADS  CAS  Google Scholar 

  81. J.G. Wan, Z.Y. Li, Y. Wang, M. Zeng, G.H. Wang, J.M. Liu, Appl. Phys. Lett. 86, 202504 (2005). doi:10.1063/1.1935040

    Article  ADS  CAS  Google Scholar 

  82. P. Murugavel, P. Padhan, W. Prellier, Appl. Phys. Lett. 85, 4992 (2004). doi:10.1063/1.1825075

    Article  ADS  CAS  Google Scholar 

  83. S. Srinath, N.A. Frey, R. Heindl, H. Srikanth, K.R. Coffey, N.J. Dudney, J. Appl. Phys. 97, 10J115 (2005)

    Article  CAS  Google Scholar 

  84. M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gosele, Science 296, 1997 (2002). doi:10.1126/science.1071210

    Article  PubMed  CAS  Google Scholar 

  85. Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 83, 440 (2003). doi:10.1063/1.1592013

    Article  ADS  CAS  Google Scholar 

  86. B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Chem. Mater. 14, 480 (2002). doi:10.1021/cm010998c

    Article  CAS  Google Scholar 

  87. J. Ryu, S. Priya, K. Uchino, H.E. Kim, J. Electroceramics 8, 107 (2002). doi:10.1023/A:1020599728432

    Article  CAS  Google Scholar 

  88. J. van den Boomgard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705 (1974). doi:10.1007/BF00540770

    Article  ADS  Google Scholar 

  89. J. Van den Boomgaard, A.M.J.G. van Run, J. van Suchtelen, Ferroelectrics 14, 727 (1976)

    Google Scholar 

  90. B. Wul, I.M. Goldman, Academie des Sciences de l’URSS—Comptes Rendus 51, 21 (1946)

    Google Scholar 

  91. N. Izyumskaya, Y. Alivov, S.-J. Cho, H. Morkoç, H. Lee, Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007). doi:10.1080/10408430701707347

    Article  CAS  Google Scholar 

  92. E.C. Subbaro, Phys. Rev. 122, 804 (1961). doi:10.1103/PhysRev.122.804

    Article  ADS  Google Scholar 

  93. P.H. Fang, C. Robbins, F. Forrat, Academie des Sciences—Comptes Rendus 252, 683 (1962)

    Google Scholar 

  94. Q.M. Zhang, V. Bharti, G. Kavarnos, M. Schwartz, “Poly (Vinylidene Fluoride) (PVDF) and its Copolymers”, Encyclopedia of Smart Materials, vol. 1–2 (Wiley, New York, 2002), pp. 807–825

    Google Scholar 

  95. O. Kenji, O. Hiroji, K. Keiko, J. Appl. Phys. 81, 2760 (1996)

    Google Scholar 

  96. S.-E. Park, T.E. Shrout, J. Appl. Phys. 82, 1804 (1997). doi:10.1063/1.365983

    Article  ADS  CAS  Google Scholar 

  97. G. Srinivasan, E.T. Rasmussen, A.A. Bush, K.E. Kamentsev, V.F. Meshcheryakov, Y.K. Fetisov, Appl. Phys. A 78, 721 (2004). doi:10.1007/s00339-002-1987-2

    Article  ADS  CAS  Google Scholar 

  98. S.-K. Kim, J.-W. Lee, S.-C. Shin, H.W. Song, C.H. Lee, K. No, J. Magn. Magn. Mater. 267, 127 (2003). doi:10.1016/S0304-8853(03)00297-X

    Article  ADS  CAS  Google Scholar 

  99. A.E. Clark, Magnetostrictive rare earth-Fe2 compounds, in Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, vol. 1, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1980), pp. 531–589

    Google Scholar 

  100. A.E. Clark, J.R. Cullen, K. Sato, Magnetostriction of single crystal and polycrystal rare earth-Fe2 compounds. AIP Conf. Proc. 24, 670 (1974). doi:10.1063/1.30227

    Article  ADS  CAS  Google Scholar 

  101. E.A. Lindgren, S. Haroush, J.C. Poret, A.D. Mazzatesta, M. Rosen, M. Rosen, M. Wun-Fogle, J.B. Restorff, A.E. Clark, J.F. Lindberg, J. Appl. Phys. 83, 7282 (1998). doi:10.1063/1.367618

    Article  ADS  CAS  Google Scholar 

  102. S.F. Fischer, M. Kelsch, H. Kronmueller, J. Magn. Magn. Mater. 195, 545 (1999). doi:10.1016/S0304-8853(99)00321-2

    Article  ADS  CAS  Google Scholar 

  103. D.C. Jiles, J.B. Thoelke, Phys. Stat. Solidi A 147, 535 (1995). doi:10.1002/pssa.2211470224

    Article  CAS  Google Scholar 

  104. G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev. B 67, 014418 (2003). doi:10.1103/PhysRevB.67.014418

    Article  ADS  CAS  Google Scholar 

  105. M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, G. Srinivasan, Phys. Rev. B 66, 134404 (2002). doi:10.1103/PhysRevB.66.134404

    Article  ADS  CAS  Google Scholar 

  106. M.I. Bichurin, R.V. Petrov, Y.V. Kiliba, Ferroelectrics 204, 311 (1997). doi:10.1080/00150199708222211

    Article  Google Scholar 

  107. C.S. Tsai, J. Su, Appl. Phys. Lett. 74, 2079 (1999). doi:10.1063/1.123763

    Article  ADS  CAS  Google Scholar 

  108. V.E. Demidov, B.A. Kalinikos, S.F. Karmanenko, A.A. Semenov, P. Edenhofer, IEEE Trans. Microw. Theory Tech. 51, 2090 (2003). doi:10.1109/TMTT.2003.817461

    Article  Google Scholar 

  109. G. Srinivasan, R. Hayes, M.I. Bichurin, Solid State Commun. 128, 261 (2003). doi:10.1016/S0038-1098(03)00727-0

    Article  ADS  CAS  Google Scholar 

  110. G. Srinivasan, I.V. Zavislyak, A.S. Tatarenko, Appl. Phys. Lett. 89, 152508 (2006). doi:10.1063/1.2360901

    Article  ADS  CAS  Google Scholar 

  111. R.K. Zheng, Y. Wang, H.L.W. Chan, C.L. Choy, H.S. Luo, Appl. Phys. Lett. 90, 152904 (2007). doi:10.1063/1.2721399

    Article  ADS  CAS  Google Scholar 

  112. Y.G. Ma, W.N. Cheng, M. Ning, C.K. Ong, Appl. Phys. Lett. 90, 152911 (2007). doi:10.1063/1.2723645

    Article  ADS  CAS  Google Scholar 

  113. M.K. Lee, T.K. Nath, C.B. Eom, M.C. Smoak, F. Tsui, Appl. Phys. Lett. 77, 3547 (2000). doi:10.1063/1.1328762

    Article  ADS  CAS  Google Scholar 

  114. J. Das, B.A. Kalinikos, A.R. Barman, C.E. Patton, Appl. Phys. Lett. 91, 172516 (2007). doi:10.1063/1.2802577

    Article  ADS  CAS  Google Scholar 

  115. D.A. Filippov, M.I. Bichurin, V.M. Petrov, V.M. Laletin, G. Srinivasan, Phys. Solid State 46, 1674 (2004). doi:10.1134/1.1799186

    Article  ADS  CAS  Google Scholar 

  116. D.A. Filippov, Phys. Solid State 47, 1118 (2005). doi:10.1134/1.1946866

    Article  ADS  CAS  Google Scholar 

  117. U. Laletin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Appl. Phys. Lett. 87, 222507 (2005). doi:10.1063/1.2137450

    Article  ADS  CAS  Google Scholar 

  118. M.I. Bichurin, V.M. Petrov, O.V. Ryabkov, S.V. Averkin, G. Srinivasan, Phys. Rev. B 72, 060408 (2005). doi:10.1103/PhysRevB.72.060408

    Article  ADS  CAS  Google Scholar 

  119. G. Srinivasan, C.P. De Vreugd, V.M. Laletin, M. Paddubnaya, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Phys. Rev. B 71, 1844423 (2005). doi:10.1103/PhysRevB.71.184423

    Article  ADS  CAS  Google Scholar 

  120. K. Koombua, R.M. Pidaparti, Ü. Özgür, H. Morkoç (unpublished)

  121. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661 (2004). doi:10.1126/science.1094207

    Article  PubMed  ADS  CAS  Google Scholar 

  122. F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S.Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D.G. Schlom, Y. Suzuki, R. Ramesh, Nano Lett. 5, 1793 (2005). doi:10.1021/nl051406i

    Article  PubMed  ADS  CAS  Google Scholar 

  123. C.-W. Nan, G. Liu, Y.H. Lin, H.D. Chen, Phys. Rev. Lett. 94, 197203 (2005). doi:10.1103/PhysRevLett.94.197203

    Article  PubMed  ADS  CAS  Google Scholar 

  124. M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun, Appl. Phys. Lett. 90, 152501 (2007). doi:10.1063/1.2722043

    Article  ADS  CAS  Google Scholar 

  125. J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, IEEE Trans. Microw. Theory Tech. 50, 721 (2002). doi:10.1109/22.989957

    Article  CAS  Google Scholar 

  126. B.M. Lebed, V.D. Voronkov, in Proceedings of 26th European Microwave Conference, Prague, 1996, pp. 816–822

  127. R. Glockler, Int. J. Infrared Millim. Waves 11, 101 (1990). doi:10.1007/BF01010509

    Article  ADS  CAS  Google Scholar 

  128. L.R. Adkins, H.I. Glass, R.L. Carter, C.K. Wai, J.M. Owens, J. Appl. Phys. 55, 2518 (1984). doi:10.1063/1.333714

    Article  ADS  Google Scholar 

  129. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005). doi:10.1063/1.2037860

    Article  ADS  CAS  Google Scholar 

  130. F. Reggia, E.G. Spencer, Proc. IRE 45, 1510 (1957)

    Article  Google Scholar 

  131. R.F. Soohoo, IEEE Trans. Magn. 4, 118 (1968). doi:10.1109/TMAG.1968.1066207

    Article  ADS  CAS  Google Scholar 

  132. B. Lax, K.J. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962)

    Google Scholar 

  133. E.K.-N. Yung, R.S. Chen, K. Wu, D.X. Wang, IEEE Trans. Microw. Theory Tech. 46, 1721 (1998). doi:10.1109/22.734570

    Article  CAS  Google Scholar 

  134. E.N. Skomal, IEEE Trans. Microw. Theory Tech. 11, 117 (1963). doi:10.1109/TMTT.1963.1125612

    Article  Google Scholar 

  135. D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005)

    Google Scholar 

  136. P. Shi, H. How, X. Zuo, S.D. Yoon, S.A. Oliver, C. Vittoria, IEEE Trans. Magn. 37, 2389 (2001). doi:10.1109/20.951181

    Article  ADS  CAS  Google Scholar 

  137. C.E. Fay, R.L. Comstock, IEEE Trans. Microw. Theory Tech. 13, 15 (1965). doi:10.1109/TMTT.1965.1125923

    Article  Google Scholar 

  138. K. Okubo, M. Tsutsumi, IEEE MTT-S Int. Microw. Symp. Dig., 548–551 (2006) doi:10.1109/MWSYM.2006.249633

  139. H. How, T.-M. Fang, C. Vittoria, IEEE Trans. Magn. 31, 997 (1995). doi:10.1109/20.364774

    Article  ADS  Google Scholar 

  140. R.A. Stern, R.W. Babbitt, U.S. Patent 4,749,966, 7 June 1988; U.S. Patent 4,754,237, 28 June 1988

  141. P.S. Carter Jr, IEEE Trans. Microw. Theory Tech. 9, 252 (1961). doi:10.1109/TMTT.1961.1125316

    Article  Google Scholar 

  142. H. Tanbakuchi, D. Nicholson, B. Kunz, W. Ishak, IEEE Trans. Magn. 25, 3248 (1989). doi:10.1109/20.42268

    Article  ADS  Google Scholar 

  143. D. Nicholson, IEEE MTT-S Int. Microw. Symp. Dig., 867–870 (1988)

  144. J. Helszajn, YIG Resonators and Filters (Wiley, New York, 1985)

    Google Scholar 

  145. M. Lemke, W. Hoppe, W. Tolksdorf, F. Weltz, I.E.E.J. Microwaves. Opt. Acoust. 3, 253 (1979)

    ADS  CAS  Google Scholar 

  146. M. Lemke, in Proceedings of 9th European Microwave Conference, 1979, pp. 617–620

  147. B.N. Enander, Proc. IRE 44, 1421 (1956)

    Article  Google Scholar 

  148. D.M. Pozar, Proc. IEEE 80, 79 (1992). doi:10.1109/5.119568

    Article  ADS  Google Scholar 

  149. G.A. Deschamps, Microstrip microwave antennas, presented at the Third USAF Symposium on Antennas, 1953

  150. K.R. Carver, J.W. Mink, IEEE Trans. Antenn. Propag. 29, 2 (1981). doi:10.1109/TAP.1981.1142523

    Article  ADS  Google Scholar 

  151. D.M. Pozar, IEEE Trans. Antenn. Propag. 40, 1084 (1992). doi:10.1109/8.166534

    Article  ADS  Google Scholar 

  152. A.D. Brown, J.L. Volakis, L.C. Kempel, Y.Y. Botros, IEEE Trans. Antenn. Propag. 47, 26 (1999). doi:10.1109/8.752980

    Article  ADS  Google Scholar 

  153. J.C. Batchelor, G. Classen, R.J. Langley, 10th International Conference on Antennas and Propagation, 14–17 April 1997, Conference publication no. 436, vol. 1, pp. 30–33

  154. K.K. Tsang, R.J. Langley, Electron. Lett. 30, 1257 (1994). doi:10.1049/el:19940869

    Article  ADS  Google Scholar 

  155. E.F. Zaitsev, Y.P. Yavon, Y.A. Komarov, A.B. Guskov, A.Y. Kanivets, IEEE Trans. Antenn. Propag. 42, 304 (1994). doi:10.1109/8.280716

    Article  ADS  Google Scholar 

  156. H.Y.D. Yang, IEEE Trans. Antenn. Propag. 44, 1127 (1996). doi:10.1109/8.511821

    Article  ADS  Google Scholar 

  157. H. Maheri, M. Tsutsumi, N. Kumagai, IEEE Trans. Antenn. Propag. 36, 911 (1988). doi:10.1109/8.7195

    Article  ADS  Google Scholar 

  158. B.A. Kramer, S. Koulouridis, C.-C. Chen, J.L. Volakis, Antennas Wirel. Propag. Lett. 5, 32 (2006). doi:10.1109/LAWP.2005.863613

    Article  ADS  Google Scholar 

  159. G. Tyras, G. Held, IEEE Trans. Microw. Theory Tech. 6, 268 (1958). doi:10.1109/TMTT.1958.1124557

    Article  Google Scholar 

  160. A.T. Adams, IEEE Trans. Antenn. Propag. 15, 342 (1967). doi:10.1109/TAP.1967.1138936

    Article  ADS  Google Scholar 

  161. D.J. Aggelakos, M.M. Korman, Proc. IRE 44, 1463 (1956)

    Article  Google Scholar 

  162. N. Das, S.K. Chowdhury, Electron. Lett. 16, 817 (1980). doi:10.1049/el:19800581

    Article  ADS  Google Scholar 

  163. N. Das, S.K. Chowdhury, J.S. Chatterjee, IEEE Trans. Antenn. Propag. 31, 188 (1983). doi:10.1109/TAP.1983.1142997

    Article  ADS  Google Scholar 

  164. S.N. Das, S.K. Chowdhury, IEEE Trans. Antenn. Propag. 30, 499 (1982). doi:10.1109/TAP.1982.1142816

    Article  ADS  Google Scholar 

  165. H. How, P. Rainville, F. Harackiewicz, C. Vittoria, Electron. Lett. 28, 1405 (1992). doi:10.1049/el:19920893

    Article  ADS  Google Scholar 

  166. D.S. Dunn, M.S. Telep, E.P. Augustin, Southcon/94, Conference records, March 1994, pp. 230–235

  167. H. Chang, I. Takenchi, X.-D. Xiang, Appl. Phys. Lett. 74, 1165 (1999). doi:10.1063/1.123475

    Article  ADS  CAS  Google Scholar 

  168. M.I. Bichurin, I.A. Kornev, V.M. Petrov, A.S. Tatarenko, Y.V. Kiliba, G. Srinivasan, Phys. Rev. B 64, 094409 (2001). doi:10.1103/PhysRevB.64.094409

    Article  ADS  CAS  Google Scholar 

  169. A.B. Ustinov, G. Srinivasan, B.A. Kalinikos, Appl. Phys. Lett. 90, 031913 (2007). doi:10.1063/1.2432953

    Article  ADS  CAS  Google Scholar 

  170. A.A. Semenov, S.F. Karmanenko, V.E. Demidov, B.A. Kalinikos, G. Srinivasan, A.N. Slavin, J.V. Mantese, Appl. Phys. Lett. 88, 033503 (2006). doi:10.1063/1.2166489

    Article  ADS  CAS  Google Scholar 

  171. A.V. Silhanek, W. Gillijns, V.V. Moshchalkov, B.Y. Zhu, J. Moonens, L.H.A. Leunissen, Appl. Phys. Lett. 89, 152507 (2006). doi:10.1063/1.2361172

    Article  ADS  CAS  Google Scholar 

  172. A.S. Tatarenko, G. Srinivasan, M.I. Bichurin, Appl. Phys. Lett. 88, 183507 (2006). doi:10.1063/1.2198111

    Article  ADS  CAS  Google Scholar 

  173. S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Science 276, 238 (1997). doi:10.1126/science.276.5310.238

    Article  PubMed  CAS  Google Scholar 

  174. T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, Z. Amlan Biswas, Chen, R.L. Greene, R. Ramesh, T. Venkatesan, A.J. Millis, Phys. Rev. Lett. 86, 5998 (2001). doi:10.1103/PhysRevLett.86.5998

    Article  PubMed  ADS  CAS  Google Scholar 

  175. S. Hontsu, H. Nishikawa, H. Nakai, J. Ishii, M. Nakamori, A. Fujimaki, Y. Noguchik, H. Tabata, T. Kawai, Supercond. Sci. Technol. 12, 836 (1999). doi:10.1088/0953-2048/12/11/343

    Article  ADS  CAS  Google Scholar 

  176. S.S. Gevorgian, D.I. Kaparkov, O.G. Vendik, I.E.E. Proc. Microw. Antennas Propag. 141, 501 (1994). doi:10.1049/ip-map:19941444

    Article  Google Scholar 

  177. R.A. Chakalov, Z.G. Ivanov, Y.A. Boikov, P. Larsson, E. Carlsson, S. Gevorgian, T. Claeson, Physica C 308, 279 (1998). doi:10.1016/S0921-4534(98)00572-3

    Article  ADS  CAS  Google Scholar 

  178. G.F. Dionne, D.E. Oates, D.H. Temme, J.A. Weiss, IEEE Trans. Microw. Theory Tech. 44, 1361 (1996). doi:10.1109/22.508241

    Article  Google Scholar 

  179. D.E. Oates, A. Piqué, K.S. Harshavardhan, J. Moses, F. Yang, G.F. Dionne, IEEE Trans. Appl. Supercond. 7, 2338 (1997). doi:10.1109/77.621708

    Article  Google Scholar 

  180. S. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 2265 (2003). doi:10.1063/1.1611276

    Article  ADS  CAS  Google Scholar 

  181. S. Dong, J.F. Li, D. Viehland, J. Cheng, L.E. Cross, Appl. Phys. Lett. 85, 3534 (2004). doi:10.1063/1.1786631

    Article  ADS  CAS  Google Scholar 

  182. A.B. Ustinov, G. Srinivasan, Y.K. Fetisov, J. Appl. Phys. 103, 063901 (2008). doi:10.1063/1.2841200

    Article  ADS  CAS  Google Scholar 

  183. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceramics 11, 5 (2003)

    Article  CAS  Google Scholar 

  184. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Tagantsev, D.V. Taylor, T. Yamda, S. Streiffer, J. Appl. Phys. 100, 051606 (2006). doi:10.1063/1.2336999

    Article  ADS  CAS  Google Scholar 

  185. S.-S. Kim, Y.-C. Yoon, K.-H. Kim, J. Electroceramics 10, 95 (2003)

    Article  CAS  Google Scholar 

  186. A.S. Tatarenko, V. Gheevarughese, G. Srinivasan, Electron. Lett. 42, 540 (2006). doi:10.1049/el:20060167

    Article  Google Scholar 

  187. D.E. Oates, G.F. Dionne, IEEE MTT-S Int. Microw. Symp. Dig. 303–306 (1997)

  188. A.A. Semenov, S.F. Karmanenko, B.A. Kalinikos, G. Srinivasan, A.N. Slavin, J.V. Mantese, Electron. Lett. 42, 641 (2006). doi:10.1049/el:20060164

    Article  CAS  Google Scholar 

  189. S.W. Kirchoefer, J.M. Pond, H.S. Newman, W.-J. Kim, J.S. Horwitz, IEEE MTT-S Int. Microw. Symp. Dig. 3, 1359 (2000)

    Google Scholar 

  190. V.E. Demidov, B.A. Kalinikos, P. Edenhofer, J. Appl. Phys. 91, 10007 (2002). doi:10.1063/1.1475373

    Article  ADS  CAS  Google Scholar 

  191. B.A. Kalinikos, A.N. Slavin, J. Phys. C 19, 7013 (1986)

    Article  ADS  Google Scholar 

  192. A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, Y. Tokura, Nature 373, 407 (1995). doi:10.1038/373407a0

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The research at VCU is made possible by funds from the Office of Naval Research under direction of the program monitor, Dr. Ingham Mack and his predecessor, Dr. C. E. C. Wood. The authors would like to thank Professors Y.-K. Hong, J.-G. Yoon, C. Vittoria, and C. M. Srinivasan, and Dr. Cole Litton for useful discussions and in some cases manuscript and sample exchange, and graduate student E. Rowe for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit Özgür.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özgür, Ü., Alivov, Y. & Morkoç, H. Microwave ferrites, part 2: passive components and electrical tuning. J Mater Sci: Mater Electron 20, 911–952 (2009). https://doi.org/10.1007/s10854-009-9924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9924-1

Keywords

Navigation