Skip to main content
Log in

Effects of rare earths on properties and microstructures of lead-free solder alloys

  • REVIEW
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to further enhance the properties of lead-free solder alloys such as SnAgCu, SnAg, SnCu and SnZn, trace amount of rare earths were selected by lots of researchers as alloys addition into these alloys. The enhancement include better wettability, physical properties, creep strength and tensile strength. For Sn3.8Ag0.7Cu bearing rare earths, when the rare earths were La and Ce, the creep-rupture life of solder joints can be remarkably improved, nine times more than that of the original Sn3.8Ag0.7Cu solder joints at room temperature. In addition, creep-rupture lifetime of RE-doped solders increases by over four times for SnAg and seven times for SnCu. This paper summarizes the effects of rare earths on the wettability, mechanical properties, physical behavior and microstructure of a series of lead-free solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, E. Beyne, Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages. Microelectron. Reliab. 47(2–3), 259–265 (2007). doi:10.1016/j.microrel.2006.09.034

    CAS  Google Scholar 

  2. B. Richards, K. Nimmo, An analysis of the current status of lead-free soldering. British Department of Trade in Industry Report 1999, pp. 1–9

  3. P.K. Shiue, L.W. Tsay, C.L. Lin, J.L. Ou, The reliability study of selected Sn–Zn based lead-free solders on Au/Ni-P/Cu substrate. Microelectron. Reliab. 43(3), 453–463 (2003). doi:10.1016/S0026-2714(02)00259-7

    Article  CAS  Google Scholar 

  4. D.Q. Yu, H.P. Xie, L. Wang, Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate. J. Alloy. Comp. 385(1–2), 119–125 (2004). doi:10.1016/j.jallcom.2004.04.129

    Article  CAS  Google Scholar 

  5. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng. Rep. 44(1), 1–44 (2004). doi:10.1016/j.mser.2004.01.001

    Article  Google Scholar 

  6. Y.W. Shi, J. Tian, H. Hao, Z.D. Xai, Y.P. Lei, F. Guo, Effect of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloy. Comp. 453(1–2), 180–184 (2008). doi:10.1016/j.jallcom.2006.11.165

    Article  CAS  Google Scholar 

  7. B. Lu, J.H. Wang, H. Li, H.W. Zhu, X.H. Jiao, Effect of cerium on microstructure and properties of Sn-0.7Cu-0.5Ni. J. Chin. Rare. Earth. 25(2), 217–222 (2007)

    CAS  Google Scholar 

  8. B. Lu, H. Li, J.H. Wang, Y.H. Zhang, Influence of trace rare earth elements on the property of Sn–Ag–Cu lead-free solder. Rare. Met. Cemented. Carbides 35(1), 27–30 (2007)

    Google Scholar 

  9. K. Sugantuma, Advances in lead-free electronics soldering. Curr. Opin. Solid State Mater. Sci. 5(1), 55–64 (2001). doi:10.1016/S1359-0286(00)00036-X

    Article  Google Scholar 

  10. L. Zhang, S.B. Xue, Y. Chen, Z.J. Han, J.X. Wang, S.L. Yu, F.Y. Lu, Effects of cerium on Sn–Ag–Cu alloys based on finite element simulation and experiments. J. Rare. Earths 27(1), 138–144 (2009). doi:10.1016/s1002-0721(08)60208-z

    Article  Google Scholar 

  11. D.Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements. J. Alloy. Comp. 376(1–2), 170–175 (2004). doi:10.1016/j.jallcom.2004.01.012

    Article  CAS  Google Scholar 

  12. L. Wang, D.Q. Yu, J. Zhao, M.L. Hhuang, Improvement of wettability and tensile property in Sn–Ag–RE lead-free solder alloy. Mater. Lett. 56(6), 1039–1042 (2002). doi:10.1016/S0167-577X(02)00672-9

    Article  CAS  Google Scholar 

  13. S.B. Xue, L. Zhang, L.L. Gao, S.L. Yu, H. Zhu, Current Situation and Prospect on Lead-free Solders affected with micro alloying elements. Welding & Joining. 2009 (3), 24–33

  14. C.M. Law, Reliability and interfacial reaction of lead-free solder alloys doped with rare earth elements (City University of Hong Kong, Hong Kong, 2004)

    Google Scholar 

  15. X.Q. Wei, H.Z. Huang, L. Zhou, M. Zhang, X. Liu, On the advantages of using a hypoeutectic Sn–Zn as lead-free solder materials. Mater. Lett. 61(3), 655–658 (2007). doi:10.1016/j.matlet.2006.05.029

    Article  CAS  Google Scholar 

  16. C.M.L. Wu, C.M.T. Law, D.Q. Yu, L. Wang, The wettability and microstructure of Sn–Zn–RE alloys. J. Electron. Mater. 32(2), 63–69 (2003). doi:10.1007/s11664-003-0238-4

    Article  ADS  CAS  Google Scholar 

  17. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements. J. Electron. Mater. 31(9), 921–927 (2002). doi:10.1007/s11664-002-0184-6

    Article  ADS  CAS  Google Scholar 

  18. X.Y. Zhao, M.Q. Zhao, X.Q. Cui, M.X. Tong, Effect of cerium on microstructure and mechanical properties of Sn–Ag–Cu system lead-free solder alloys. Trans. Nonferrous Met. Soc. China 17(4), 805–810 (2007). doi:10.1016/S1003-6326(07)60178-2

    Article  CAS  Google Scholar 

  19. M.A. Dudek, R.S. Sidhu, N. Chawla, M. Renavikar, Microstructure and mechanical behavior of novel rare earth-containing Pb-free solders. J. Electron. Mater. 35(12S), 2088–2097 (2006). doi:10.1007/s11664-006-0318-3

    Article  ADS  CAS  Google Scholar 

  20. A.G. Ramirez, H. Mavoori, S. Jin, Bonding nature of rare-earth-containing lead-free solders. Appl. Phys. Lett. 80(3), 338–340 (2002). doi:10.1063/1.1435075

    Article  Google Scholar 

  21. W.M. Xiao, Y.W. Shi, Y.P. Lei, Z.D. Xai, F. Guo, Comparative study of microstructures and properties of three valuable SnAgCuRE lead-free solder alloys. J. Electron. Mater. 35(5), 1095–1103 (2006). doi:10.1007/BF02692572

    Article  ADS  CAS  Google Scholar 

  22. S.B. Xue, L. Liu, Y.F. Dai, L.H. Yao, Effects of rare-earth element Ce on physical properties and mechanical properties of Sn–Ag–Cu lead-free solder. Trans. China Weld. Institution. 26(10), 23–26 (2005)

    CAS  Google Scholar 

  23. A.R. Geranmayeh, R. Mahmudi, Power law indentation creep of Sn-5%Sb solder alloy. J. Mater. Sci. 40(13), 3361–3366 (2005). doi:10.1007/s10853-005-0421-5

    Article  ADS  CAS  Google Scholar 

  24. R. Mahmudi, A.R. Geranmayen, M. Bakherad, M. Allami, Indentation creep study of lead-free Sn-5%Sb solder alloy. Mater. Sci. Eng. A 457(1–2), 173–179 (2007). doi:10.1016/j.msea.2007.01.060

    Google Scholar 

  25. L. Zhang, S.B. Xue, Z.J. Han, J.X. Wang, L.L. Gao, Z. Sheng, Mechanical properties of fine pitch device soldered joints based on creep model. Chin. J. Mech. Eng. 21(6), 82–85 (2008). doi:10.3901/CJME.2008.06.082

    Article  Google Scholar 

  26. L. Zhang, S.B. Xue, G. Zeng, Z.J. Han, S.L. Yu, Study on mechanical properties and numerical simulation of fine pitch devices soldered joints. Trans. China Weld. Institution. 29(10), 35–39 (2008)

    MATH  Google Scholar 

  27. C.M. Chuang, K.L. Lin, Effect of microelements addition on the interfacial reaction between Sn–Ag–Cu solders and the Cu substrate. J. Electron. Mater. 32(12S), 1426–1431 (2003). doi:10.1007/s11664-003-0111-5

    Article  ADS  CAS  Google Scholar 

  28. M. Gonzalez, B. Vandevelde, E. Beyne, Thermo-mechanical analysis of a chip scale package (CSP) using lead-free and lead containing solder materials// European Microelectronics and Packaging Symposium, Prague, Czech Republic, June 2004, pp. 247–252

  29. L. Zhang, S.B. Xue, Z.J. Han, S.L. Yu, Z. Sheng, The investigation of mechanical fracture morphology of lead-free soldered joints of fine pitch devices. Trans. China Weld. Institution. 29(9), 40–43 (2008)

    Google Scholar 

  30. K.K. Zhang, J. Yang, Y.L. Wang, Y.L. Fan, X. Zhang, Y.F. Yan, Research on creep properties of SnAgCuRE lead-free soldered joints//International Conference on Electronic Packaging Technology, Shanghai, China, 1–3 August, 2006

  31. Y. Chen, S.B. Xue, X.C. Lv, Y.P. Liao, Influence of cerium on microstructure of Sn–Ag–Cu lead-free solder. Trans. China Weld. Institution. 26(10), 69–72 (2005)

    Google Scholar 

  32. X. Ma, F.J. Wang, Y.Y. Qian, F. Yoshida, Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface. Mater. Lett. 57(22–23), 3361–3365 (2003). doi:10.1016/S0167-577X(03)00075-2

    Article  CAS  Google Scholar 

  33. Q. Liu, B. Lu, H. Li, J.H. Wang, H.W. Zhu, X.H. Jiao, Effect of adding 0.1% Ce into Sn-3.0Ag-0.5Cu solder alloy on its microstructure and intermetallic compounds with Cu substrate. J. Chin. Rare Earth Soc. 25(6), 707–712 (2007)

    CAS  Google Scholar 

  34. S.B. Xue, Y. Chen, X.C. Lv, Thermodynamic calculation and evaluation for Sn–Ag–Cu–Ce lead-free solder alloy system Sn–Ag–Cu–Ce. Trans. China. Weld. Institution. 26(5), 20–22 (2005)

    CAS  Google Scholar 

  35. X. Ma, Y.Y. Qian, F. Yoshida, Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability. J. Alloy. Comp. 334(1), 224–227 (2002). doi:10.1016/S0925-8388(01)01747-9

    Article  CAS  Google Scholar 

  36. M. Pei, J.M. Qu, Effect of Lanthanum doping on the microstructure of tin-silver solder alloys. J. Electron. Mater. 37(3), 331–338 (2008). doi:10.1007/s11664-007-0335-x

    Article  ADS  CAS  Google Scholar 

  37. M. Pei, J.M. Qu, Creep and fatigue behavior of SnAg solders with Lanthanum doping. IEEE Trans. Compon. Packag. Tech. 31(3), 712–718 (2008). doi:10.1109/TCAPT.2008.922002

    Article  CAS  Google Scholar 

  38. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Microstructure and mechanical properties of new lead-free Sn–Cu–RE solder alloys. J. Electron. Mater. 31(9), 928–932 (2002). doi:10.1007/s11664-002-0185-5

    Article  ADS  CAS  Google Scholar 

  39. C.M.L. Wu, A promising lead-free material for flip-chip bumps: Sn–Cu–RE//The Fourth international Conference on Advanced Semiconductor Devices and Microsystem, Smolenice Castle, Slovakia, October, 2002:17–26

  40. H. Wang, S.B. Xue, Z.J. Han, J.X. Wang, Research status and prospect of Sn–Zn based lead-free solders. Welding & Joining. 2007 (2), 31–35

  41. J. Villain, W. Jillek, E. Schmitt, T. Qasim, Properties and reliability of SnZn-based lead-free solder alloys//International IEEE Conference Asian Green Electronics, Hong Kong, China, January, 2004:38–41

  42. H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, Z.D. Xia, Studies on microstructure and performance of SnAgCuY lead-free solders doped with rare earth Y. Rare. Met. Mater. Eng. 35(S2), 121–123 (2006)

    CAS  Google Scholar 

  43. H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, Z.D. Xia, Properties of Sn3.8Ag0.7Cu solder alloy with trace rare earth element Y additions. J. Electron. Mater. 36(7), 766–774 (2007). doi:10.1007/s11664-007-0138-0

    Article  ADS  CAS  Google Scholar 

  44. C.M.L. Law, C.M.L. Wu, D.Q. Yu, L. Wang, J.K.L. Lai, Microstructure, solderability, and growth of intermetallic compounds of Sn–Ag–Cu–RE lead-free solder alloys. J. Electron. Mater. 35(1), 89–93 (2006). doi:10.1007/s11664-006-0189-7

    Article  ADS  CAS  Google Scholar 

  45. Z.G. CHEN, Y.W. SHI, Z.D. XIA et al., Study on the microstructure of a novel lead-free solder alloy SnAgCu-RE and its soldered joints. J. Electron. Mater. 31(10), 1122–1128 (2002). doi:10.1007/s11664-002-0052-4

    Article  ADS  CAS  Google Scholar 

  46. M.A. Dudek, R.S. Sidhu, N. Chawla, Novel rare-earth-containing lead-free solders with enhanced ductility. J. Miner. Met. Mater. Soc. 58(6), 57–62 (2006). doi:10.1007/s11837-006-0184-8

    CAS  Google Scholar 

  47. M.A. Dudek, N. Chawla, Three-dimensional (3D) microstructure visualization of LaSn3 intermetallic in a novel Sn-rich rare-earth-containing solder. Mater. Charact. 59(9), 1364–1368 (2008). doi:10.1016/j.matchar.2007.10.008

    Article  CAS  Google Scholar 

  48. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J. Electron. Mater. 29(10), 1122–1136 (2000). doi:10.1007/s11664-000-0003-x

    Article  ADS  CAS  Google Scholar 

  49. C.H. Raeder, G.D. Schmeelk, D. Mitlin, T. Barbieri, W. Yang, L.F. Felton, R.W. Messler, D.B. Knorr, D. Lee, Isothermal creep of eutectic SnBi and SnAg solder and solder joints//Sixteenth International Electronics Manufacturing Technology Symposium, La Jolla, CA, USA, September 1994, pp. 1–6

  50. D.H. Kim, Reliability study of SnPb and SnAg solder joints in PBGA packages (The University of Texas, Austin, 2007)

    Google Scholar 

  51. H. Johann, C. Hoyler, M. Schneegans, H. Torwesten, Evaluation of lead-free SnAg solder ball deposition and reflow processes for flip chip applications. Mircoelectronic Eng. 82(3–4), 581–586 (2005). doi:10.1016/j.mee.2005.07.072

    Google Scholar 

  52. L. Zhang, S.B. Xue, F.Y. Lu, Z.J. Han, J.X. Wang, Numerical simulation of soldered joints and reliability analysis of PLCC components with J-shape leads. China Weld. 17(2), 37–41 (2008)

    Google Scholar 

  53. H. Mavoori, A.G. Ramirez, S. Jin, Universal solders for direct and powerful bonding on semiconductors, diamond, and optical materials. Appl. Phys. Lett. 78(19), 2976–2978 (2001). doi:10.1063/1.1370985

    Article  ADS  CAS  Google Scholar 

  54. M. Pei, Effects of lanthanum doping on the microstructure and mechanical behavior of a SnAg alloy (Georgia Institute of Technology, Georgia, 2007)

    Google Scholar 

  55. B. Trumble, Printed circuit assembly with no lead solder assembly process//Proceeding of the IEEE International Symposium on Electronics and the Environment, San Francisco, CA, USA,1997:25–27

  56. D.J. Luo, X.Y. Lin, R.H. Liu, Choice of lead-free solder and its countermeasure. Electron. Process. Technol. 25(5), 202–204 (2004)

    ADS  Google Scholar 

  57. V. Sunappan, P. Collier, Lead-free wave soldering development for PCB assembly//Proceeding of the 53rd Electronic Components and Technology Conference, New Orleans, May, 2003:1829–1838

  58. Y.Q. Zheng, Effect of surface finishes and intermetallics on the reliability of SnAgCu interconnects (University of Maryland, Maryland, 2005)

    Google Scholar 

  59. B. Lu, J.H. Wang, H. Li, H.W. Zhu, X.H. Jiao, Effect of 0.10% Ce on intermetallic compounds at Sn-0.7Cu-0.5Ni/Cu. Chin. J. Nonferrous. Met. 17(3), 390–395 (2007)

    CAS  Google Scholar 

  60. J.W. Jang, I.A.P.D. Silva, T.Y. Lee, J.K. Lin, D.R. Frear, Direct correction between microstructure and mechanical tensile properties in Pb-free solders and eutectic SnPb solder for flip chip technology. Appl. Phys. Lett. 482(23), 49–57 (2001)

    Google Scholar 

  61. S.B. Xue, J.X. Wang, S.L. Yu, Y.P. Shi, Z.J. Han, Effects of thermal cycling on mechanical property of chip resistor joints soldered with Sn–Cu–Ni–Ce solder. Trans. China Weld. Institution 29(4), 5–8 (2008)

    CAS  Google Scholar 

  62. Y.P. Shi, S.B. Xue, J.X. Wang, L.Y. Gu, W.H. Gu, Effects of Ce on spreadability of Sn–Cu–Ni lead-free solder and mechanical properties of soldered joints. Trans. China Weld. Institution. 28(11), 73–77 (2007)

    CAS  Google Scholar 

  63. J.X. Wang, S.B. Xue, Z.J. Han, Y.P. Shi, L. Zhang, Effects of Ce on physical properties and spreadability of Sn–Cu–Ni solder. Electron. Weld. Mach. 38(9), 42–45 (2008)

    MATH  Google Scholar 

  64. Z.J. Han, S.B. Xue, J.X. Wang, S.B. Wang, Effects of Sn–Cu–Ni–Ce solder on mechanical properties of micro-joints soldered with diode-laser soldering system. Trans. China Weld. Institution. 28(1), 33–36 (2007)

    CAS  Google Scholar 

  65. J.X. Wang, S.B. Xue, X. Huang, Z.J. Han, S.L. Yu, Effects of N2 protection on wettability of Sn–Cu–Ni–Ce lead-free solder. Trans. China Weld. Institution. 28(1), 49–52 (2007)

    MATH  Google Scholar 

  66. R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, W. Jillek, Investigations on microhardness of Sn–Zn based lead-free solder alloys as replacement of Sn–Pb. J. Alloy. Comp. 392(1–2), 149–158 (2005). doi:10.1016/j.jallcom.2004.08.079

    Article  CAS  Google Scholar 

  67. M.N. Islam, Y.C. Chan, M.J. Rizvi, W. Jillek, Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder. J. Alloy. Comp. 400(1–2), 136–144 (2005). doi:10.1016/j.jallcom.2005.03.053

    Article  CAS  Google Scholar 

  68. J.E. Lee, K.S. Kim, M. Inoue, J.X. Jiang, K. Suganuma, Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy. J. Alloy. Comp. 454(1–2), 310–320 (2008). doi:10.1016/j.jallcom.2006.12.037

    Article  CAS  Google Scholar 

  69. H. Wang, S.B. Xue, W.X. Chen, Effects of Al addition on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder. Electron. Weld. Mach. 38(9), 61–64 (2008)

    ADS  CAS  Google Scholar 

  70. R. Mahmudi, A.R. Geranmayeh, H. Noori, M. Shahabi, Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater. Sci. Eng. A. 491(1–2), 110–116 (2008). doi:10.1016/j.msea.2008.01.051

    Google Scholar 

  71. C.M.L. Wu, Y.W. Wong, Rare-earth additions to lead-free electronic solders. J. Mater. Sci.: Mater. Electron. 18(1–3), 77–91 (2007). doi:10.1007/s10854-006-9022-6

    CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial support from the Nanjing University of Aeronautics and Astronautics Undergraduate Scientific Research Innovative(20080110), Six Kind Skilled Personnel Project of Jiangsu Province (CX07B_087z), and the Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan(CX07B_087z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-bai Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Xue, Sb., Gao, Ll. et al. Effects of rare earths on properties and microstructures of lead-free solder alloys. J Mater Sci: Mater Electron 20, 685–694 (2009). https://doi.org/10.1007/s10854-009-9895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9895-2

Keywords

Navigation