Skip to main content
Log in

Preparation and photoelectric properties of Ti doped ZnO thin films annealed in vacuum

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, Ti doped ZnO films with higher conductive properties were grown on room temperature glass substrates by radio frequency magnetron sputtering and followed by annealing in vacuum. The microstructures and surface figures of the films were investigated by X-ray diffraction and scanning electronic microscopy, and its optical and electrical properties were measured using a four-point probe technique and 756-type spectrophotometer at room temperature. The results show that the preferred growth orientation of the films is (002) orientation, and after annealing in vacuum at 400 °C for 3 h, the average transmittance reduces from 90 to 80%, and resistivity reduces from 4.53 × 10−2 to 8.78 × 10−4 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998). doi:10.1063/1.367375

    Article  CAS  ADS  Google Scholar 

  2. P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Physica B 392, 332 (2007). doi:10.1016/j.physb.2006.11.043

    Article  CAS  ADS  Google Scholar 

  3. Y.G. Cui, G.T. Du, Y.T. Zhang, H.C. Zhu, B.L. Zhang, J. Cryst. Growth 282, 389 (2005). doi:10.1016/j.jcrysgro.2005.05.028

    Article  CAS  ADS  Google Scholar 

  4. F. Paraguay, D.W. Estrada, L.D.R. Acosta, E. Andrade, M. Miki-Yoshida, Thin Solid Films 350, 192 (1999). doi:10.1016/S0040-6090(99)00050-4

    Article  ADS  Google Scholar 

  5. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983). doi:10.1016/0040-6090(83)90256-0

    Article  CAS  ADS  Google Scholar 

  6. V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, R. Yakimova, Thin Solid Films 515, 472 (2006). doi:10.1016/j.tsf.2005.12.269

    Article  CAS  ADS  Google Scholar 

  7. X. Zhi, G.Y. Zhao, T. Zhu, Y. Li, Surf. Interface Anal. 40, 67 (2008). doi:10.1002/sia.2693

    Article  CAS  Google Scholar 

  8. N.L.H. Hoang, N. Yamada, T. Hitosuqi, J. Kasai, S. Nakao, T. Shimada, T. Haseqawa, Appl. Phys. Express 1, 1150011 (2008). doi:10.1143/APEX.1.115001

    Article  Google Scholar 

  9. M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai, Physica B 302–303, 140 (2001). doi:10.1016/S0921-4526(01)00419-7

    Article  Google Scholar 

  10. V. Bhosle, A. Tiwari, J. Narayan, J. Appl. Phys. 100, 033713 (2006). doi:10.1063/1.2218466

    Article  ADS  Google Scholar 

  11. Y.S. Kim, W.P. Tai, Appl. Surf. Sci. 253, 4911 (2007). doi:10.1016/j.apsusc.2006.10.068

    Article  CAS  ADS  Google Scholar 

  12. W.L. Dang, Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.I. Milne, Superlattice. Microst. 42, 89 (2007). doi:10.1016/j.spmi.2007.04.081

    Article  CAS  ADS  Google Scholar 

  13. S.S. Lin, J.L. Huang, D.F. Lii, Mater. Chem. Phys. 90, 22 (2005). doi:10.1016/j.matchemphys.2004.08.040

    Article  CAS  Google Scholar 

  14. S.S. Lin, J.L. Huang, P.S. Ăjgalik, Surf. Coat. Tech. 191, 286 (2005). doi:10.1016/j.surfcoat.2004.03.021

    Article  CAS  Google Scholar 

  15. J.J. Lu, Y.M. Lu, S.I. Tasi, T.L. Hsiung, H.P. Wang, L.Y. Jang, Opt. Mater. 29, 1548 (2007). doi:10.1016/j.optmat.2006.08.002

    Article  CAS  ADS  Google Scholar 

  16. Y.R. Park, K.J. Kim, Solid State Commun. 123, 147 (2002). doi:10.1016/S0038-1098(02)00217-X

    Article  CAS  ADS  Google Scholar 

  17. Z.H. Xiong, F.Y. Jiang, J. Phys. Chem. Solids 68, 1500 (2007). doi:10.1016/j.jpcs.2007.03.020

    Article  CAS  ADS  Google Scholar 

  18. A. Moustaghfir, E. Tomasella, S.B. Amor, Surf. Coat. Tech. 174–175, 193 (2003). doi:10.1016/S0257-8972(03)00417-1

    Article  Google Scholar 

  19. A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Thin Solid Films 204, 255 (1991). doi:10.1016/0040-6090(91)90067-8

    Article  CAS  ADS  Google Scholar 

  20. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983). doi:10.1088/0022-3735/16/12/023

    Article  CAS  ADS  Google Scholar 

  21. E. Burstein, Phys. Rev 93, 632 (1954). doi:10.1103/PhysRev.93.632

    Article  CAS  ADS  Google Scholar 

  22. W. Lin, R. Ma, W. Shao, B. Liu, Appl. Surf. Sci. 253, 5719 (2007)

    Google Scholar 

  23. W. Lin, R.X. Ma, W. Shao, B. Kang, Z.L. Wu, Rare Met. 27, 32 (2008). doi:10.1016/S1001-0521(08)60025-X

    Article  CAS  Google Scholar 

  24. J. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 22, 49 (2002). doi:10.1016/S0955-2219(01)00241-2

    Article  Google Scholar 

  25. M. Chen, X. Wang, Y.H. Yu, Appl. Surf. Sci. 158, 134 (2000). doi:10.1016/S0169-4332(99)00601-7

    Article  CAS  ADS  Google Scholar 

  26. J.L. Chung, J.C. Chen, C.J. Tseng, J. Phys. Chem. Solids 69, 535 (2008). doi:10.1016/j.jpcs.2007.07.040

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Education Department of Guangxi Zhuang Autonomous Region for financially supporting this research under the 200807LX121 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Liu, X., Chen, G. et al. Preparation and photoelectric properties of Ti doped ZnO thin films annealed in vacuum. J Mater Sci: Mater Electron 20, 1225–1228 (2009). https://doi.org/10.1007/s10854-009-9856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9856-9

Keywords

Navigation