Skip to main content
Log in

Interfacial characteristic of (Ba,Sr)TiO3 thin films deposited on different bottom electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium strontium titanate (Ba1−x Sr x )TiO3 (BST) thin films were deposited on Pt, Ru, RuO2, and Pt/RuO2 electrodes by radio frequency magnetron sputtering. The interfacial structure characteristic of the BST films deposited on various electrodes was investigated. X-ray photoelectron spectroscopy investigations showed that the interfacial diffusion layer in BST/Pt and BST/Ru are approximately 6 and 10 nm, respectively. The BST films are short of Ba and O elements comparing with the stoichiometry Ba0.65Sr0.35TiO3 in the interface region. Dielectric measurement of the BST films with thickness ranging from 70 to 400 nm revealed that the BST films deposited on Pt and Pt/RuO2 bottom electrodes have similar dielectric property, the BST films deposited on Ru have the highest bulk dielectric constant, and the thickness dependence of dielectric constant on the BST film deposited on RuO2 electrode can be neglected. The interfacial layer dielectric constant of BST films deposited on Pt and Ru electrodes are estimated to be about 34.5 and 157.1, respectively. The effect of interfacial dead-layer on the dielectric constant could be eliminated through selecting appropriate bottom electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Ezhilvalavan, T.Y. Tseng, Mater. Chem. Phys. 65, 227 (2000). doi:10.1016/S0254-0584(00)00253-4

    Article  CAS  Google Scholar 

  2. P. Padmini, T.R. Taylor, M.J. Lefevre et al., Appl. Phys. Lett. 75, 3186 (1999). doi:10.1063/1.125272

    Article  CAS  ADS  Google Scholar 

  3. F. De Flaviis, N.G. Alexopoulos, O.M. Staffsudd, IEEE Trans. Microw. Theory Tech. 45, 963 (1997). doi:10.1109/22.588610

    Article  Google Scholar 

  4. M.W. Cole, W.D. Nothwang, C. Kwon et al., J. Appl. Phys. 93, 9218 (2003). doi:10.1063/1.1569392

    Article  CAS  ADS  Google Scholar 

  5. J.X. Liao, C.R. Yang, J.H. Zhang et al., Appl. Surf. Sci. 252, 7407 (2006). doi:10.1016/j.apsusc.2005.08.073

    Article  CAS  ADS  Google Scholar 

  6. M.S. Tsai, S.C. Sun, T.Y. Tseng, IEEE Trans. Electron. Dev. 46, 1829 (1999). doi:10.1109/16.784181

    Article  CAS  ADS  Google Scholar 

  7. Y.C. Choi, B.S. Lee, Mater. Chem. Phys. 61, 124 (1999). doi:10.1016/S0254-0584(99)00120-0

    Article  Google Scholar 

  8. C.S. Hwang, B.T. Lee, C.S. Kang et al., J. Appl. Phys. 85, 287 (1999). doi:10.1063/1.369443

    Article  CAS  ADS  Google Scholar 

  9. F.M. Pontes, E.R. Leite, E. Longo et al., Appl. Phys. Lett. 76, 2433 (2000). doi:10.1063/1.126367

    Article  CAS  ADS  Google Scholar 

  10. D.K. Choi, B.S. Kim, S.Y. Son et al., J. Appl. Phys. 86, 3347 (1999). doi:10.1063/1.371212

    Article  CAS  ADS  Google Scholar 

  11. S.H. Oh, K.W. Park, J.H. Park et al., J. Vac. Sci. Technol. B 18, 1923 (2000). doi:10.1116/1.1305274

    Article  CAS  Google Scholar 

  12. C. Zhou, D.M. Newns, J. Appl. Phys. 82, 3081 (1997). doi:10.1063/1.366147

    Article  CAS  ADS  Google Scholar 

  13. J.D. Baniecki, T. Shioga, K. Kurihara et al., J. Appl. Phys. 97, 114101 (2005). doi:10.1063/1.1872201

    Article  ADS  Google Scholar 

  14. O.G. Vendik, S.P. Zubko, L.T. Ter-Martirosayn, Appl. Phys. Lett. 73, 37 (1998). doi:10.1063/1.121715

    Article  CAS  ADS  Google Scholar 

  15. L.J. Sinnamon, J. McAneney, R.M. Bowman et al., J. Appl. Phys. 93, 736 (2003). doi:10.1063/1.1522476

    Article  CAS  ADS  Google Scholar 

  16. B. Chen, H. Yang, J. Miao et al., J. Appl. Phys. 97, 024106 (2005). doi:10.1063/1.1828219

    Article  ADS  Google Scholar 

  17. I. Kondo, T. Yoneyama, O. Takenaka et al., J. Vac. Sci. Technol. A 10, 3456 (1992). doi:10.1116/1.577802

    Article  CAS  ADS  Google Scholar 

  18. T.J. Zhang, J.Z. Wang, B.S. Zhang et al., J. Mater. Sci. Mater. Electron. 18, 877 (2007). doi:10.1007/s10854-006-9081-8

    Article  Google Scholar 

  19. L.J. Sinnamon, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 78, 1724 (2001). doi:10.1063/1.1356731

    Article  CAS  ADS  Google Scholar 

  20. B. Chen, H. Yang, L. Zhao et al., Appl. Phys. Lett. 84, 583 (2004). doi:10.1063/1.1644342

    Article  CAS  ADS  Google Scholar 

  21. B.T. Lee, C.S. Hwang, Appl. Phys. Lett. 77, 124 (2000). doi:10.1063/1.126897

    Article  CAS  ADS  Google Scholar 

  22. M.M. Saad, P. Baxter, R.M. Bowman et al., J. Phys. Cond. Matt. 16, L451 (2004). doi:10.1088/0953-8984/16/41/L04

    Article  CAS  ADS  Google Scholar 

  23. L.W. Chang, M. McMillen, F.D. Morrison et al., Appl. Phys. Lett. 93, 132904 (2008). doi:10.1063/1.2990760

    Article  ADS  Google Scholar 

  24. X.H. Zhu, D.N. Zheng, H. Zeng et al., Thin solid film 496, 376 (2006)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of PR China through Grant No. 50672022 and The Hubei Province Key Laboratory of Refractories and Ceramics Ministry-Province jointly-Constructed Cultivation Base for State key Laboratory through Grant No. G0701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, T., Zhang, B. et al. Interfacial characteristic of (Ba,Sr)TiO3 thin films deposited on different bottom electrodes. J Mater Sci: Mater Electron 20, 1208–1213 (2009). https://doi.org/10.1007/s10854-009-9853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9853-z

Keywords

Navigation