Skip to main content
Log in

Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline undoped and Cu-doped Zinc oxide (Zn0.98Cu0.02O) nanocrystals were successfully synthesized by solid-state reaction method. The micro structural, optical and magnetic properties have been characterized using powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive analysis using X-rays (EDAX), UV–Visible spectroscopy, Photoluminescence, Vibrating sample magnetometer and Electron paramagnetic resonance spectroscopy. XRD pattern reveals that the samples possess hexagonal wurtzite structure of ZnO without any secondary phase after copper doping. Optical absorption analysis of the samples showed a red shift in absorption band edge with copper doping in ZnO. Photoluminescence spectra of the samples shows prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanism have also been discussed. Magnetic measurements using VSM showed that the nanocrystalline copper doped ZnO exhibits ferromagnetic behaviour at 300 K. EPR analysis also confirms the substitution of Zn site by Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951–956 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.: Condens. Matter 17, R657–R689 (2005)

    Article  CAS  ADS  Google Scholar 

  3. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  4. A.P. Gary, Science 282, 1660–1663 (1998)

    Article  Google Scholar 

  5. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1021 (2001)

    Article  ADS  Google Scholar 

  6. Y. Ryu, T.S. Lee, Appl. Phys. Lett. 88, 241108–241110 (2006)

    Article  ADS  Google Scholar 

  7. D.H. Chi, L.T. Binh, N.T. Binh, L.D. Khanh, N.N. Nong, Appl. Surf. Sci. 252, 2770–2775 (2006)

    Article  CAS  ADS  Google Scholar 

  8. O. Seven, B. Dindar Aydemir, J. Photochem. Photobiol. A: Chem. 165, 103–107 (2004)

    Article  CAS  Google Scholar 

  9. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, J.S. Chen, K.S. Teng, J. Phys.: Condens. Matter 19, 236214–236222 (2007)

    Article  ADS  Google Scholar 

  10. G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, J. Xu, J. Magn. Magn. Mater. 302, 340–342 (2006)

    Article  CAS  ADS  Google Scholar 

  11. L.H. Ye, A.J. Freeman, B. Delley, Phys. Rev. B 73, 033203–033206 (2006)

    Article  ADS  Google Scholar 

  12. L.M. Huang, A.L. Rosa, R. Ahuja, Phys. Rev. B 74, 075206–075212 (2006)

    Article  ADS  Google Scholar 

  13. C. Sudakar, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, B. Delley, Phys. Rev. B 75, 054423–054429 (2007)

    Article  ADS  Google Scholar 

  14. H.J. Lee, B.S. Kim, C.R. Cho, S.Y. Jeong, Phys. Status Solidi B 241, 1533–1536 (2004)

    Article  CAS  ADS  Google Scholar 

  15. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Massachusetts, 1978)

    Google Scholar 

  16. J. Diouri, J.P. Lascaray, M. El Amrani, Phys. Rev. B31, 7995–7999 (1985)

    ADS  Google Scholar 

  17. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, Phys. Rev. B 33, 8207–8215 (1986)

    Article  CAS  ADS  Google Scholar 

  18. L. Guo, Y.L. Ji, H.B. Xu, P. Simon, Z.Y. Wu, J. Am. Chem. Soc. 124, 14864–14865 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Adv. Mater. 16, 1661–1664 (2004)

    Article  CAS  Google Scholar 

  20. J.F. Coley, L. Stecker, Y. Ono, Nanotechnology 16, 292–296 (2005)

    Article  ADS  Google Scholar 

  21. H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17, 4312–4316 (2006)

    Article  CAS  ADS  Google Scholar 

  22. M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113–116 (2001)

    Article  CAS  Google Scholar 

  23. S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761–2763 (1999)

    Article  CAS  ADS  Google Scholar 

  24. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 456–459 (1997)

    Article  Google Scholar 

  25. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X.Z. Wu, X. Zhao, J. Crystal Growth 292, 19–25 (2006)

    Article  CAS  ADS  Google Scholar 

  26. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352–357 (2006)

    Article  CAS  ADS  Google Scholar 

  27. S. Monticone, R. Tufeu, A.V. Kanaev, J. Phys. Chem. B 102, 2854–2862 (1998)

    Article  CAS  Google Scholar 

  28. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voight, J. Appl. Phys. 79, 7983–7986 (1996)

    Article  CAS  ADS  Google Scholar 

  29. R. Dingle, Phys. Rev. Lett. 23, 579–581 (1969)

    Article  CAS  ADS  Google Scholar 

  30. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35–42 (1992)

    Article  CAS  Google Scholar 

  31. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)

    Article  CAS  ADS  Google Scholar 

  32. H.L. Liu, J.H. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, D.D. Wang, L.Y. Zhao, J.H. Lang, M. Gao, J. Mater Sci.: Mater Electron 20, 628–631 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Central Instrumentation Facility (CIF), Pondicherry University, India, for having allowed to use VSM, SEM and PL and also thankful to DST-FIST for funding XRD in the Department of Physics, Pondicherry University, India and facility provided for UV–Visible and EPR analysis at Department of chemistry, Pondicherry University, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elilarassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elilarassi, R., Chandrasekaran, G. Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. J Mater Sci: Mater Electron 21, 1168–1173 (2010). https://doi.org/10.1007/s10854-009-0041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-0041-y

Keywords

Navigation