Influence of rapid thermal annealing (RTA) on the structural and electrical properties of SnS films

Article

Abstract

The performance of optoelectronic devices critically depends on the quality of active layer. An effective way to obtain a high quality layers is by creating excess of metal atoms through various heat treatments. Recently, rapid thermal annealing (RTA) has proved a versatile technique for the post-treatment of semiconductor materials as compared to other techniques due to its precise control over the resources. Thus, we carried out a set of experiments on SnS films to explore the influence of RTA treatment on their properties. From these experiments we noticed that the films treated at 400 °C for 1 min in N2 atmosphere have a low electrical resistivity of ~5 Ωcm with relatively high Hall mobility and carrier density of 99 cm2/Vs and 1.3 × 1016 cm−3, respectively. The observed results, therefore, emphasise that it is possible to obtain good quality SnS films through RTA treatment without disturbing their crystal structure.

References

  1. 1.
    M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, Thin Solid Films 361, 98 (2000). doi:10.1016/S0040-6090(99)00798-1 CrossRefADSGoogle Scholar
  2. 2.
    A.T. Kana, T.G. Hibbert, M.F. Mahon, K.C. Molloy, I.P. Parkin, L.S. Price, Polyhedron 20, 2989 (2001). doi:10.1016/S0277-5387(01)00908-1 CrossRefGoogle Scholar
  3. 3.
    M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Opt. Mater. 20, 159 (2002). doi:10.1016/S0925-3467(02)00030-7 CrossRefGoogle Scholar
  4. 4.
    A. Sanchez-Juarez, A. Ortız, Semicond. Sci. Technol. 17, 931 (2002). doi:10.1088/0268-1242/17/9/305 CrossRefADSGoogle Scholar
  5. 5.
    K.T. Ramakrishna Reddy, P. Purandhara Reddy, P.K. Datta, R.W. Miles, Thin Solid Films 403, 116 (2002). doi:10.1016/S0040-6090(01)01520-6 CrossRefADSGoogle Scholar
  6. 6.
    A. Abou Shama, H.M. Zeyada, Opt. Mater. 24, 555 (2003). doi:10.1016/S0925-3467(03)00138-1 CrossRefADSGoogle Scholar
  7. 7.
    A. Tanusevski, Semicond. Sci. Technol. 18, 501 (2003). doi:10.1088/0268-1242/18/6/318 CrossRefADSGoogle Scholar
  8. 8.
    A. Tanusevski, D. Poelman, Sol. Energy Mater. Sol. Cells 80, 297 (2003). doi:10.1016/j.solmat.2003.06.002 CrossRefGoogle Scholar
  9. 9.
    B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Mater. Chem. Phys. 71, 40 (2001)CrossRefGoogle Scholar
  10. 10.
    H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27, 85 (2004). doi:10.1007/BF02708491 CrossRefGoogle Scholar
  11. 11.
    N. Koteeswara Reddy, K.T. Ramakrishna Reddy, Phys. B 368, 25 (2005). doi:10.1016/j.physb.2005.06.032 CrossRefGoogle Scholar
  12. 12.
    H. Nozaki, M. Onoda, M. Sekita, K. Kosuda, T. Wada, J. Solid State Chem. 178, 245 (2005). doi:10.1016/j.jssc.2004.11.031 CrossRefADSGoogle Scholar
  13. 13.
    H. Ben Haj Salah, H. Bouzouita, B. Rezig, Thin Solid Films 480, 439 (2005). doi:10.1016/j.tsf.2004.11.035 CrossRefADSGoogle Scholar
  14. 14.
    N. Sato, M. Ichimura, E. Arai, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 85, 153 (2005). doi:10.1016/j.solmat.2004.04.014 CrossRefGoogle Scholar
  15. 15.
    N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K.T. Ramakrishna Reddy, K.R. Gunasekhar, E.S.R. Gopal, Appl. Phys. A 83, 133 (2006). doi:10.1007/s00339-005-3475-y CrossRefADSGoogle Scholar
  16. 16.
    M. Devika, K.T. Ramakrishna Reddy, N. Koteeswara Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, K.R. Gunasekhar, J. Appl. Phys. 100, 023518 (2006). doi:10.1063/1.2216790 CrossRefADSGoogle Scholar
  17. 17.
    N. Koteeswara Reddy, Y.B. Hahn, M. Devika, H.R. Sumana, K.R. Gunasekhar, J. Appl. Phys. 101, 093522 (2007). doi:10.1063/1.2729450 CrossRefADSGoogle Scholar
  18. 18.
    S. Cheng, Y. Chen, Y. He, G. Chen, Mater. Lett. 61, 1408 (2007). doi:10.1016/j.matlet.2006.07.067 CrossRefGoogle Scholar
  19. 19.
    M. Devika, N. Koteeswara Reddy, D. Sreekantha Reddy, S. Venkatramana Reddy, K. Ramesh, E.S.R. Gopal, K.R. Gunasekhar, V. Ganesan, Y.B. Hahn, J. Phys. Condens. Matter 19, 306003 (2007). doi:10.1088/0953-8984/19/30/306003 CrossRefGoogle Scholar
  20. 20.
    D. Avellaneda, G. Delgado, M.T.S. Nair, P.K. Nair, Thin Solid Films 515, 5771 (2007). doi:10.1016/j.tsf.2006.12.078 CrossRefADSGoogle Scholar
  21. 21.
    M. Devika, N. Koteeswara Reddy, D. Sreekantha Reddy, Q. Ahsanulhaq, K. Ramesh, E.S.R. Gopal, K.R. Gunasekhar, Y.B. Hahn, J. Electrochem. Soc. 155, H130 (2008). doi:10.1149/1.2819677 CrossRefGoogle Scholar
  22. 22.
    S. Biswas, S. Kar, S. Chaudhuri, Appl. Surf. Sci. 253, 9259 (2007). doi:10.1016/j.apsusc.2007.05.053 CrossRefADSGoogle Scholar
  23. 23.
    Y. Li, J.P. Tu, X.H. Huang, H.M. Wu, Y.F. Yuan, Electrochem. Commun. 9, 49 (2007). doi:10.1016/j.elecom.2006.08.019 CrossRefGoogle Scholar
  24. 24.
    Y.J. Yang, B.J. Xiang, Appl. Phys. A 83, 461 (2006). doi:10.1007/s00339-006-3572-6 CrossRefADSGoogle Scholar
  25. 25.
    H. Hu, B. Yang, J. Zeng, Y. Qian, Mater. Chem. Phys. 86, 233 (2004). doi:10.1016/j.matchemphys.2004.04.001 CrossRefGoogle Scholar
  26. 26.
    C. An, K. Tang, Y. Jin, Q. Liu, X. Chen, Y. Qian, J. Crys. Grow. 252, 581 (2003). doi:10.1016/S0022-0248(03)00961-8 CrossRefADSGoogle Scholar
  27. 27.
    Y. Liu, D. Hou, G. Wang, Chem. Phys. Lett. 379, 67 (2003). doi:10.1016/j.cplett.2003.08.014 CrossRefADSGoogle Scholar
  28. 28.
    M. Ristov, G. Sinadinovski, M. Mitreski, M. Ristova, Sol. Energy Mater. Sol. Cells 69, 17 (2001)CrossRefGoogle Scholar
  29. 29.
    A.S. Juarez, A.T. Silver, A. Ortiz, Thin Solid Films 480, 452 (2005). doi:10.1016/j.tsf.2004.11.012 CrossRefGoogle Scholar
  30. 30.
    M. Gunasekaran, M. Ichimura, Sol. Energy Mater. Sol. Cells 91, 774 (2007). doi:10.1016/j.solmat.2006.10.026 CrossRefGoogle Scholar
  31. 31.
    T. Miyawaki, M. Ichimura, Mater. Lett. 61, 4683 (2007). doi:10.1016/j.matlet.2007.03.006 CrossRefGoogle Scholar
  32. 32.
    K.T. Ramakrishna Reddy, N. Koteeswara Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006). doi:10.1016/j.solmat.2006.06.012 CrossRefGoogle Scholar
  33. 33.
    B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Sol. Energy Mater. Sol. Cells 79, 57 (2003)CrossRefGoogle Scholar
  34. 34.
    A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, M. Tatsumisago, J. Power Sources 146, 496 (2005). doi:10.1016/j.jpowsour.2005.03.056 CrossRefGoogle Scholar
  35. 35.
    V. Raghavan, Materials Science and Engineering, vol. 4 (Prentice Hall of India, New Delhi, 1999), p. 181Google Scholar
  36. 36.
    H. Kim, J.S. Horwize, S.B. Qadri, D.B. Chrisey, Thin Solid Films 107, 420 (2002)Google Scholar
  37. 37.
    A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Jpn. J. Appl. Phys. 35, L56 (1996)CrossRefADSGoogle Scholar
  38. 38.
    X.J. Zheng, W.M. Yi, Y.Q. Chen, Q.Y. Wu, L. He, Scr. Mater. 57, 675 (2007). doi:10.1016/j.scriptamat.2007.06.045 CrossRefGoogle Scholar
  39. 39.
    M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, Semicond. Sci. Technol. 21, 1125 (2006). doi:10.1088/0268-1242/21/8/025 CrossRefADSGoogle Scholar
  40. 40.
    H.Z. Massoud, in Rapid Thermal Annealing Processing: Science and Technology, ed. by R.B. Fair (Academic, Boston, 1993), p. 58Google Scholar
  41. 41.
    M. Devika, N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, J. Electrochem. Soc. 154, H67 (2007). doi:10.1149/1.2398816 CrossRefGoogle Scholar
  42. 42.
    D. Trbojevic, P.M. Nikolic, B. Perovic, V. Cvekic, Appl. Phys. Lett. 38, 362 (1981). doi:10.1063/1.92378 CrossRefADSGoogle Scholar
  43. 43.
    J.M. Chamberlain, P.M. Nikolic, M. Merdan, P. Mihailovic, J. Phys. C: Solid State Phys. 9, L637 (1976). doi:10.1088/0022-3719/9/22/004 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  3. 3.School of ChemistryTel Aviv UniversityTel AvivIsrael
  4. 4.Department of PhysicsS. V. University PG CentreKavaliIndia
  5. 5.Department of InstrumentationIndian Institute of ScienceBangaloreIndia

Personalised recommendations