Skip to main content
Log in

Enhanced polarization in zirconia-P(VDF-TrFE) laminar composite dielectrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zirconia-P(VDF-TrFE) double-layered laminar composites are experimentally investigated to understand inorganic–organic interfacial effects in composite dielectrics. The DC and AC electrical response of the individual phases were characterized in addition to the zirconia-P(VDF-TrFE) composite. The measured real part of permittivity for the laminar composite is found to be higher than theoretically calculated values using series mixing rules for zirconia and P(VDF-TrFE). Additional polarization of the composite structure can be attributed to either the presence of interfacial polarization of zirconia and P(VDF-TrFE) or modification of polymer. Impedance spectroscopy has shown that dielectric properties of laminar composites are dominated by zirconia thin films in low frequency region. The impedance spectroscopy shows that zirconia blocks charge carrier motion and hence partially contribute towards additional interfacial polarization in the laminar composite. The dielectric response of the laminar composite was also modeled through a Maxwell–Wagner interfacial polarization mechanism, which was found to inadequately describe the polarization response. Equivalent circuit modeling of the composite has revealed an additional interfacial circuit element for the additional polarization, suggesting a structurally modified polymer at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004). doi:10.1109/TDEI.2004.1349785

    Article  Google Scholar 

  2. J.F. Tressler, S. Alkoy, A. Dogan, R.E. Newnham, Compos. Part A. Appl. Sci. Manuf. 30, 477 (1999). doi:10.1016/S1359-835X(98)00137-7

    Article  Google Scholar 

  3. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, W. Zenger, IEEE Trans. Dielectr. Electr. Insul. 12, 629 (2005). doi:10.1109/TDEI.2005.1511089

    Article  CAS  Google Scholar 

  4. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, J. Mater. Sci. 42, 3789 (2007). doi:10.1007/s10853-006-0413-0

    Article  ADS  CAS  Google Scholar 

  5. J.K. Nelson, J.C. Fothergill, Nanotechnology 15, 586 (2004). doi:10.1088/0957-4484/15/5/032

    Article  ADS  CAS  Google Scholar 

  6. P. Murugaraj, D. Mainwaring, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005). doi:10.1063/1.2034654

    Article  ADS  Google Scholar 

  7. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005). doi:10.1109/TDEI.2005.1522186

    Article  CAS  Google Scholar 

  8. Y. Nakajima, T. Matsuyama, J. Electrost. 55, 203 (2002)

    Google Scholar 

  9. A.V. Wagner, G.W. Johnson, T.W. Barbee, Mater. Res. Soc. Symp. Proc. 574, 219 (1999)

    CAS  Google Scholar 

  10. Y.S. Lee, H. Kim, P.C. Mclntyre, K.C. Saraswat, J.S. Byun, Appl. Phys. Lett. 82, 2874 (2003). doi:10.1063/1.1569985

    Article  ADS  CAS  Google Scholar 

  11. J.H. Lee, N.M. Hwang, D.H. Kim, R. Mahapatra, S. Maikap, G.S. Kar, A. Dhar, B.K. Mathur, S.K. Ray, Appl. Phys. Lett. 82, 2320 (2003). doi:10.1063/1.1566480

    Article  ADS  Google Scholar 

  12. X. Zhou, B. Chu, B. Neese, M. Lin, Q.M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 14, 1133 (2007). doi:10.1109/TDEI.2007.4339472

    Article  Google Scholar 

  13. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006). doi:10.1126/science.1127798

    Article  PubMed  ADS  CAS  Google Scholar 

  14. T. Ulrike, J. Am. Ceram. Soc. 89, 3201 (2006). doi:10.1111/j.1551-2916.2006.01200.x

    Article  Google Scholar 

  15. Z.M. Li, M.D. Arbatti, Z.Y. Cheng, Macromolecules 37, 79 (2004). doi:10.1021/ma035251h

    Article  ADS  CAS  Google Scholar 

  16. G.W. Dietz, M. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, A.I. Kingon, J. Appl. Phys. 82, 2359 (1997). doi:10.1063/1.366045

    Article  ADS  CAS  Google Scholar 

  17. M.T. Lanagan, J.K. Yamamoto, A. Bhalla, S.G. Sankar, Mater. Lett. 7, 437 (1989). doi:10.1016/0167-577X(89)90047-5

    Article  CAS  Google Scholar 

  18. B. Ploss, B. Ploss, Polymer (Guildf.) 41, 6087 (2000). doi:10.1016/S0032-3861(99)00861-7

    Article  CAS  Google Scholar 

  19. B. Chu, M. Lin, B. Neese, X. Zhou, Q. Chen, Q.M. Zhang, Appl. Phys. Lett. 91, 122909 (2007). doi:10.1063/1.2786839

    Article  ADS  Google Scholar 

  20. A.R. Von Hippel, Dielectric and Waves (Artech House, MA, 1995)

    Google Scholar 

  21. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  22. F.D. Morrison, D.J. Jung, J.F. Scott, J. Appl. Phys. 101, 094112 (2007). doi:10.1063/1.2723194

    Article  ADS  Google Scholar 

  23. T.J. Lewis, J. Phys. D. Appl. Phys. (Berl.) 38, 202 (2005)

    Article  ADS  CAS  Google Scholar 

  24. T. Tanaka, M. Kozako, N. Fuse, Y. Ohiki, IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005). doi:10.1109/TDEI.2005.1511092

    Article  CAS  Google Scholar 

  25. E. Ho, M. Marcolongo, Dent. Mater. 21, 656 (2005). doi:10.1016/j.dental.2004.09.002

    Article  PubMed  CAS  Google Scholar 

  26. S. Walheim, M. Boltau, J. Mylnek, G. Krausch, U. Steiner, Macromolecules 30, 4995 (1997). doi:10.1021/ma9619288

    Article  ADS  CAS  Google Scholar 

  27. H.T. Vo, F.G. Shi, Microelectron. J. 33, 409 (2002). doi:10.1016/S0026-2692(02)00010-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Mr. Paul Moses, Mr. Jeff Long for electrical characterization and appreciate helpful discussions with Dr. Eugene Furman. Office of Naval Research sponsored the work under grant N00014-05-1-0541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyush Tewari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, P., Sethi, G., Horn, M.W. et al. Enhanced polarization in zirconia-P(VDF-TrFE) laminar composite dielectrics. J Mater Sci: Mater Electron 20, 1001–1007 (2009). https://doi.org/10.1007/s10854-008-9823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9823-x

Keywords

Navigation